On a Total Version of 1-2-3 Conjecture
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1175-1186.

Voir la notice de l'article provenant de la source Library of Science

A total k-coloring of a graph G is a coloring of vertices and edges of G using colors of the set 1, . . ., k. These colors can be used to distinguish adjacent vertices of G. There are many possibilities of such a distinction. In this paper, we focus on the one by the full sum of colors of a vertex, i.e., the sum of the color of the vertex, the colors on its incident edges and the colors on its adjacent vertices. This way of distinguishing vertices has similar properties to the method when we only use incident edge colors and to the corresponding 1-2-3 Conjecture.
Keywords: neighbor sum distinguishing total coloring, general edge coloring, total coloring, neighbor-distinguishing index, neighbor full sum distinguishing total k -coloring
@article{DMGT_2020_40_4_a15,
     author = {Baudon, Olivier and Hocquard, Herv\'e and Marczyk, Antoni and Pil\'sniak, Monika and Przyby{\l}o, Jakub and Wo\'zniak, Mariusz},
     title = {On a {Total} {Version} of 1-2-3 {Conjecture}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1175--1186},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a15/}
}
TY  - JOUR
AU  - Baudon, Olivier
AU  - Hocquard, Hervé
AU  - Marczyk, Antoni
AU  - Pilśniak, Monika
AU  - Przybyło, Jakub
AU  - Woźniak, Mariusz
TI  - On a Total Version of 1-2-3 Conjecture
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 1175
EP  - 1186
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a15/
LA  - en
ID  - DMGT_2020_40_4_a15
ER  - 
%0 Journal Article
%A Baudon, Olivier
%A Hocquard, Hervé
%A Marczyk, Antoni
%A Pilśniak, Monika
%A Przybyło, Jakub
%A Woźniak, Mariusz
%T On a Total Version of 1-2-3 Conjecture
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 1175-1186
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a15/
%G en
%F DMGT_2020_40_4_a15
Baudon, Olivier; Hocquard, Hervé; Marczyk, Antoni; Pilśniak, Monika; Przybyło, Jakub; Woźniak, Mariusz. On a Total Version of 1-2-3 Conjecture. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1175-1186. http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a15/

[1] M. Axenovich, J. Harant, J. Przyby lo, R. Soták and M. Voigt, A note on adjacent vertex distinguishing colorings number of graphs, Discrete Appl. Math. 205 (2016) 1–7. doi:10.1016/j.dam.2015.12.005

[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London, 1976).

[3] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 197–210.

[4] S. Czerwiński, J. Grytczuk and W. Żelazny, Lucky labelings of graphs, Inform. Process. Lett. 109 (2009) 1078–1081. doi:10.1016/j.ipl.2009.05.011

[5] A. Davoodi and B. Omoomi, On the 1 - 2 - 3 -conjecture, Discrete Math. Theor. Comput. Sci. 17 (2015) 67–78.

[6] R.J. Faudree, M.S. Jacobson, J. Lehel and R.H. Schelp, Irregular networks, regular graphs and integer matrices with distinct row column sums, Discrete Math. 76 (1989) 223–240. doi:10.1016/0012-365X(89)90321-X

[7] E. Flandrin, H. Li, A. Marczyk, J-F. Saclé and M. Woźniak, A note on neighbor expanded sum distinguishing index, Discuss. Math. Graph Theory 37 (2017) 29–37. doi:10.7151/dmgt.1909

[8] M. Kalkowski, A note on 1, 2-conjecture, Ph.D. Thesis (UAM Poznań, 2009).

[9] M. Kalkowski, M. Karoński and F. Pfender, Vertex-coloring edge weightings: Towards the 1 - 2 - 3 -conjecture, J. Combin. Theory Ser. B 100 (2010) 347–349. doi:10.1016/j.jctb.2009.06.002

[10] M. Karoński, T. Luczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory Ser. B 91 (2004) 151–157. doi:10.1016/j.jctb.2003.12.001

[11] M. Khatirinejad, R. Naserasr, M. Newman, B. Seamone and B. Stevens, Vertex-colouring edge weightings with two edge weights, Discrete Math. Theor. Comput. Sci. 14 (2012) 1–20. doi:10.7748/en.20.1.14.s6

[12] J. Przyby lo and M. Woźniak, On a 1, 2 conjecture, Discrete Math. Theor. Comput. Sci. 12 (2010) 101–108.

[13] B. Seamone, The 1-2-3 conjecture and related problems: a survey, Technical Report (2012). http://arxiv.org/abs/1211.5122

[14] C. Thomassen, Y. Wu and C.-Q. Zhang, The 3 -flow conjecture, factors modulo k, and the 1 - 2 - 3 -conjecture, J. Combin. Theory Ser. B 121 (2016) 308–325. doi:10.1016/j.jctb.2016.06.010