A Note on the Crossing Numbers of 5-Regular Graphs
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1127-1140.

Voir la notice de l'article provenant de la source Library of Science

The crossing number cr(G) of a graph G is the smallest number of edge crossings in any drawing of G. In this paper, we prove that there exists a unique 5-regular graph G on 10 vertices with cr(G) = 2. This answers a question by Chia and Gan in the negative. In addition, we also give a new proof of Chia and Gan’s result which states that if G is a non-planar 5-regular graph on 12 vertices, then cr(G) ≥ 2.
Keywords: crossing number, 5-regular graph, drawing
@article{DMGT_2020_40_4_a12,
     author = {Ouyang, Zhangdong},
     title = {A {Note} on the {Crossing} {Numbers} of {5-Regular} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1127--1140},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a12/}
}
TY  - JOUR
AU  - Ouyang, Zhangdong
TI  - A Note on the Crossing Numbers of 5-Regular Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 1127
EP  - 1140
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a12/
LA  - en
ID  - DMGT_2020_40_4_a12
ER  - 
%0 Journal Article
%A Ouyang, Zhangdong
%T A Note on the Crossing Numbers of 5-Regular Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 1127-1140
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a12/
%G en
%F DMGT_2020_40_4_a12
Ouyang, Zhangdong. A Note on the Crossing Numbers of 5-Regular Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1127-1140. http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a12/

[1] G. Chartrand and L. Lesniak, Graphs and Digraphs, 3rd Edition (Chapman & Hall, New York, 1996).

[2] G.L. Chia and C.S. Gan, On crossing numbers of 5-regular graphs, in: J.-Y. Cai and C.K. Wong (Eds.), Computing and Combinatorics, Lecture Notes in Comput. Sci. 2387 (2002) 230–237. doi:10.1007/3-540-45655-4 26

[3] G.L. Chia and C.S. Gan, Minimal regular graphs with given girths and crossing numbers, Discuss. Math. Graph Theory 24 (2004) 223–237. doi:10.7151/dmgt.1227

[4] Z.D. Ouyang, J. Wang and Y.Q. Huang, The crossing number of join of the generalized Petersen graph P (3, 1) with path and cycle, Discuss. Math. Graph Theory 38 (2018) 351–370. doi:10.7151/dmgt.2005

[5] M. Schaefer, Crossing Numbers of Graphs (CRC Press Inc., Boca Raton, Florida, 2017).

[6] Y.S. Yang, J.H. Lin and Y.J. Dai, Largest planar graphs and largest maximal planar graphs of diameter two, J. Comput. Appl. Math. 144 (2002) 349–358. doi:10.1016/S0377-0427(01)00572-6