Decomposing the Complete Graph Into Hamiltonian Paths (Cycles) and 3-Stars
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 3, pp. 823-839

Voir la notice de l'article provenant de la source Library of Science

Let H be a graph. A decomposition of H is a set of edge-disjoint subgraphs of H whose union is H. A Hamiltonian path (respectively, cycle) of H is a path (respectively, cycle) that contains every vertex of H exactly once. A k-star, denoted by Sk, is a star with k edges. In this paper, we give necessary and sufficient conditions for decomposing the complete graph into α copies of Hamiltonian path (cycle) and β copies of S3.
Keywords: decomposition, complete graph, Hamiltonian path, Hamiltonian cycle, star
@article{DMGT_2020_40_3_a8,
     author = {Lee, Hung-Chih and Chen, Zhen-Chun},
     title = {Decomposing the {Complete} {Graph} {Into} {Hamiltonian} {Paths} {(Cycles)} and {3-Stars}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {823--839},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a8/}
}
TY  - JOUR
AU  - Lee, Hung-Chih
AU  - Chen, Zhen-Chun
TI  - Decomposing the Complete Graph Into Hamiltonian Paths (Cycles) and 3-Stars
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 823
EP  - 839
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a8/
LA  - en
ID  - DMGT_2020_40_3_a8
ER  - 
%0 Journal Article
%A Lee, Hung-Chih
%A Chen, Zhen-Chun
%T Decomposing the Complete Graph Into Hamiltonian Paths (Cycles) and 3-Stars
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 823-839
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a8/
%G en
%F DMGT_2020_40_3_a8
Lee, Hung-Chih; Chen, Zhen-Chun. Decomposing the Complete Graph Into Hamiltonian Paths (Cycles) and 3-Stars. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 3, pp. 823-839. http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a8/