Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_3_a13, author = {Drgas-Burchardt, Ewa and Sidorowicz, El\.zbieta}, title = {Sum-List {Colouring} of {Unions} of a {Hypercycle} and a {Path} with at {Most} {Two} {Vertices} in {Common}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {893--917}, publisher = {mathdoc}, volume = {40}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a13/} }
TY - JOUR AU - Drgas-Burchardt, Ewa AU - Sidorowicz, Elżbieta TI - Sum-List Colouring of Unions of a Hypercycle and a Path with at Most Two Vertices in Common JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 893 EP - 917 VL - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a13/ LA - en ID - DMGT_2020_40_3_a13 ER -
%0 Journal Article %A Drgas-Burchardt, Ewa %A Sidorowicz, Elżbieta %T Sum-List Colouring of Unions of a Hypercycle and a Path with at Most Two Vertices in Common %J Discussiones Mathematicae. Graph Theory %D 2020 %P 893-917 %V 40 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a13/ %G en %F DMGT_2020_40_3_a13
Drgas-Burchardt, Ewa; Sidorowicz, Elżbieta. Sum-List Colouring of Unions of a Hypercycle and a Path with at Most Two Vertices in Common. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 3, pp. 893-917. http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a13/
[1] C. Berge, Hypergraphs: Combinatorics of Finite Sets (North-Holland, 1989).
[2] A. Berliner, U. Bostelmann, R.A. Brualdi and L. Deaett, Sum list coloring graphs, Graphs Combin. 22 (2006) 173–183. doi:10.1007/s00373-005-0645-9
[3] C. Brause, A. Kemnitz, M. Marangio, A. Pruchnewski and M. Voigt, Sum choice number of generalized θ-graphs, Discrete Math. 340 (2017) 2633–2640. doi:10.1016/j.disc.2016.11.028
[4] R. Diestel, Graph Theory, 5th Ed., Graduate Texts in Mathematics (Springer-Verlag, New York, 2017). doi:10.1007/978-3-662-53622-3
[5] E. Drgas-Burchardt and A. Drzystek, Acyclic sum-list-coloring of grids and other classes of graphs, Opuscula Math. 37 (2017) 535–556. doi:10.7494/OpMath.2017.37.4.535
[6] E. Drgas-Burchardt and A. Drzystek, General and acyclic sum-list-coloring of graphs, Appl. Anal. Discrete Math. 10 (2016) 479–500. doi:10.2298/AADM161011026D
[7] E. Drgas-Burchardt, A. Drzystek and E. Sidorowicz, Sum-list-coloring of θ-hypergraphs, submitted.
[8] B. Heinold, Sum List Coloring and Choosability, Ph.D. Thesis (Lehigh University, 2006).
[9] G. Isaak, Sum list coloring 2 × n arrays, Electron. J. Combin. 9 (2002) #N8. doi:10.37236/1669
[10] G. Isaak, Sum list coloring block graphs, Graphs Combin. 20 (2004) 499–506. doi:10.1007/s00373-004-0564-1
[11] A. Kemnitz, M. Marangio and M. Voigt, Generalized sum list colorings of graphs, Discuss. Math. Graph Theory 39 (2019) 689–703. doi:10.7151/dmgt.2174
[12] A. Kemnitz, M. Marangio and M. Voigt, Sum list colorings of complete multipartite graphs, (2014), preprint.
[13] A. Kemnitz, M. Marangio and M. Voigt, Sum list colorings of small graphs, Congr. Numer. 223 (2015) 45–58.
[14] A. Kemnitz, M. Marangio and M. Voigt, Sum list colorings of wheels, Graphs Combin. 31 (2015) 1905–1913. doi:10.1007/s00373-015-1565-y
[15] A. Kemnitz, M. Marangio and M. Voigt, On the P-sum choice number of graphs for 1-additive properties, Congr. Numer. 229 (2017) 117–124.
[16] M.A. Lastrina, List-Coloring and Sum-List-Coloring Problems on Graphs, Ph.D. Thesis (Iowa State University, 2012).