Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_2_a16, author = {Rowlinson, Peter}, title = {On {Trees} as {Star} {Complements} in {Regular} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {621--636}, publisher = {mathdoc}, volume = {40}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a16/} }
Rowlinson, Peter. On Trees as Star Complements in Regular Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 621-636. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a16/
[1] F.K. Bell and P. Rowlinson, On the multiplicities of graph eigenvalues, Bull. Lond. Math. Soc. 35 (2003) 401–408. doi:10.1112/S0024609303002030
[2] J. Capaverde and P. Rowlinson, Eigenvalue multiplicity in quartic graphs, Linear Algebra Appl. 535 (2017) 160–170. doi:10.1016/j.laa.2017.08.023
[3] N.E. Clarke, W.D. Garraway, C.A. Hickman and R.J. Nowakowski, Graphs where star sets are matched to their complements, J. Combin. Math. Combin. Comput. 37 (2001) 177–185.
[4] D. Cvetković, M. Doob, I. Gutman and A. Torǧasev, Recent Results in the Theory of Graph Spectra (North-Holland, Amsterdam, 1988).
[5] D. Cvetković, P. Rowlinson and S.K. Simić, An Introduction to the Theory of Graph Spectra (Cambridge University Press, Cambridge, 2010).
[6] P. Rowlinson, Eigenvalue multiplicity in cubic graphs, Linear Algebra Appl. 444 (2014) 211–218. doi:10.1016/j.laa.2013.11.036
[7] P. Rowlinson, An extension of the star complement technique for regular graphs, Linear Algebra Appl. 557 (2018) 496–507. doi:10.1016/j.laa.2018.08.018
[8] P. Rowlinson, Eigenvalue multiplicity in regular graphs, Discrete Appl. Math. 269 (2019) 11–17. doi:10.1016/j.dam.2018.07.023
[9] P. Rowlinson and B. Tayfeh-Rezaie, Star complements in regular graphs: Old and new results, Linear Algebra Appl. 432 (2010) 2230–2242. doi:10.1016/j.laa.2009.04.022