Slobodan Simić: An Appreciation
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 367-378.

Voir la notice de l'article provenant de la source Library of Science

Slobodan Simić had many interests and many friends. Doubtless each of his 66 co-authors has a story to tell, but here we can offer only our own personal perspectives.
Keywords: Slobodan Simić
@article{DMGT_2020_40_2_a0,
     author = {Cvetkovi\'c, Drago\v{s} and Rowlinson, Peter},
     title = {Slobodan {Simi\'c:} {An} {Appreciation}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {367--378},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a0/}
}
TY  - JOUR
AU  - Cvetković, Dragoš
AU  - Rowlinson, Peter
TI  - Slobodan Simić: An Appreciation
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 367
EP  - 378
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a0/
LA  - en
ID  - DMGT_2020_40_2_a0
ER  - 
%0 Journal Article
%A Cvetković, Dragoš
%A Rowlinson, Peter
%T Slobodan Simić: An Appreciation
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 367-378
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a0/
%G en
%F DMGT_2020_40_2_a0
Cvetković, Dragoš; Rowlinson, Peter. Slobodan Simić: An Appreciation. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 367-378. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a0/

[1] J. Akiyama, K. Kaneko and S.K. Simić, Graph equations for line and n-th power graphs, Publ. Inst. Math. (Beograd) 23(37) (1978) 5–8.

[2] F.K. Bell, E.M.Li Marzi and S.K. Simić, Some new results on graphs with least eigenvalue not less than − 2, Rend. Sem. Mat. Messina Ser. II 9(25) (2003) 11–30.

[3] F.K. Bell and S.K. Simić, On graphs whose star complement for − 2 is a path or a cycle, Linear Algebra Appl. 377 (2004) 249–265. doi:10.1016/j.laa.2003.08.016

[4] D. Cvetković, Autobiographical Notes, V. Kovačević-Vujčić (Ed.), (Akademska misao, Beograd, 2017), in Serbian.

[5] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs, 3rd Edition (Johann Ambrosius Barth, Heidelberg, 1995).

[6] D. Cvetković, M. Doob and S.K. Simić, Generalized line graphs, J. Graph Theory 5 (1981) 385–399. doi:10.1002/jgt.3190050408

[7] D. Cvetković, I. Gutman and V. Kovačević-Vujčić (Eds.), Graphs, Optimization, Chemistry: Reports on the Work of a Scientific Project (Akademska misao, Beograd, 2007), in Serbian.

[8] D. Cvetković, M. Lepović, P. Rowlinson and S.K. Simić, A database of star complements of graphs, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat 9 (1998) 103–112.

[9] D. Cvetković, M. Lepović, P. Rowlinson and S.K. Simić, The maximal exceptional graphs, J. Combin. Theory Ser. B 86 (2002) 347–363. doi:10.1006/jctb.2002.2132

[10] D. Cvetković, P. Rowlinson and S.K. Simić, Eigenspaces of Graphs (Cambridge University Press, Cambridge, 1997). doi:10.1017/CBO9781139086547

[11] D. Cvetković, P. Rowlinson and S.K. Simić, Graphs with least eigenvalue − 2 : the star complement technique, J. Algebraic Combin. 14 (2001) 5–16. doi:10.1023/A:1011209801191

[12] D. Cvetković, P. Rowlinson and S.K. Simić, Some additions to the theory of star partitions of graphs, Discuss. Math. Graph Theory 19 (1999) 119–134. doi:10.7151/dmgt.1089

[13] D. Cvetković, P. Rowlinson and S.K. Simić, Some characterizations of graphs by star complements, Linear Algebra Appl. 301 (1999) 81–87. doi:10.1016/S0024-3795(99)00179-2

[14] D. Cvetković, P.Rowlinson and S.K. Simić, The maximal exceptional graphs with largest degree less than 28, Bull. Acad. Serbe Sci. Arts, Cl. Sci. Math. Natur. Sci. Math. 122 (2001) 115–131.

[15] D. Cvetković, P. Rowlinson and S.K. Simić, Graphs with least eigenvalue − 2 : a new proof of the 31 forbidden subgraphs theorem, Des. Codes Cryptogr. 34 (2005) 229–240. doi:10.1007/s10623-004-4856-5

[16] D. Cvetković, P. Rowlinson and S.K. Simić, Spectral Generalizations of Line Graphs: on Graphs with Least Eigenvalue − 2 (Cambridge University Press, Cambridge, 2004). doi:10.1017/CBO9780511751752

[17] D. Cvetković, P. Rowlinson and S.K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155–171. doi:10.1016/j.laa.2007.01.009

[18] D. Cvetković, P. Rowlinson and S.K. Simić, An Introduction to the Theory of Graph Spectra (Cambridge University Press, Cambridge, 2009). doi:10.1017/CBO9780511801518

[19] D. Cvetković, P. Rowlinson and S.K. Simić, Graphs with least eigenvalue at least − 2 : ten years on, Linear Algebra Appl. 484 (2015) 504–539. doi:10.1016/j.laa.2015.06.012

[20] D. Cvetković and S.K. Simić, Combinatorics—Classical and Modern, Naučna knjiga (Beograd, 1984), in Serbian.

[21] D. Cvetković and S.K. Simić, The second largest eigenvalue of a graph—a survey, Int. Conf. on Algebra, Logic ---amp--- Discrete Math., Niš, April 14–16, 1995, Bogdanović, Ćirić and Ž. Perović (Eds.), (FILOMAT (Niš) 9, 1995) 449–472.

[22] D. Cvetković and S.K. Simić, Discrete Mathematics, Mathematics for Computer Science, Improved and Extended Edition (Prosveta, Niš, 1996), in Serbian.

[23] F. Harary, Independent discoveries in graph theory, Annals of the New York Academy of Sciences 328 (1979) 1–4. doi:10.1111/j.1749-6632.1979.tb17761.x

[24] M. Petrović and Z. Radosavljević, Spectrally Constrained Graphs (Faculty of Science, Kragujevac, 2001).

[25] Z. Radosavljević, S.K. Simić, M. Sys lo and J. Topp, A note on generalized line graphs, Publ. Inst. Math. (Beograd) 34(48) (1983) 193–198.