The Proper Diameter of a Graph
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 107-125
Voir la notice de l'article provenant de la source Library of Science
A proper edge-coloring of a graph is a coloring in which adjacent edges receive distinct colors. A path is properly colored if consecutive edges have distinct colors, and an edge-colored graph is properly connected if there exists a properly colored path between every pair of vertices. In such a graph, we introduce the notion of the graph’s proper diameter—which is a function of both the graph and the coloring—and define it to be the maximum length of a shortest properly colored path between any two vertices in the graph. We consider various families of graphs to find bounds on the gap between the diameter and possible proper diameters, paying singular attention to 2-colorings.
Keywords:
diameter, properly connected, proper diameter
@article{DMGT_2020_40_1_a7,
author = {Coll, Vincent and Hook, Jonelle and Magnant, Colton and McCready, Karen and Ryan, Kathleen},
title = {The {Proper} {Diameter} of a {Graph}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {107--125},
publisher = {mathdoc},
volume = {40},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a7/}
}
TY - JOUR AU - Coll, Vincent AU - Hook, Jonelle AU - Magnant, Colton AU - McCready, Karen AU - Ryan, Kathleen TI - The Proper Diameter of a Graph JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 107 EP - 125 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a7/ LA - en ID - DMGT_2020_40_1_a7 ER -
%0 Journal Article %A Coll, Vincent %A Hook, Jonelle %A Magnant, Colton %A McCready, Karen %A Ryan, Kathleen %T The Proper Diameter of a Graph %J Discussiones Mathematicae. Graph Theory %D 2020 %P 107-125 %V 40 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a7/ %G en %F DMGT_2020_40_1_a7
Coll, Vincent; Hook, Jonelle; Magnant, Colton; McCready, Karen; Ryan, Kathleen. The Proper Diameter of a Graph. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 107-125. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a7/