Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_1_a23, author = {Kardo\v{s}, Franti\v{s}ek and Macekov\'a, M\'aria and Mockov\v{c}iakov\'a, Martina and Sopena, \'Eric and Sot\'ak, Roman}, title = {Incidence {Coloring{\textemdash}Cold} {Cases}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {345--354}, publisher = {mathdoc}, volume = {40}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a23/} }
TY - JOUR AU - Kardoš, František AU - Maceková, Mária AU - Mockovčiaková, Martina AU - Sopena, Éric AU - Soták, Roman TI - Incidence Coloring—Cold Cases JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 345 EP - 354 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a23/ LA - en ID - DMGT_2020_40_1_a23 ER -
%0 Journal Article %A Kardoš, František %A Maceková, Mária %A Mockovčiaková, Martina %A Sopena, Éric %A Soták, Roman %T Incidence Coloring—Cold Cases %J Discussiones Mathematicae. Graph Theory %D 2020 %P 345-354 %V 40 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a23/ %G en %F DMGT_2020_40_1_a23
Kardoš, František; Maceková, Mária; Mockovčiaková, Martina; Sopena, Éric; Soták, Roman. Incidence Coloring—Cold Cases. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 345-354. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a23/
[1] M. Bonamy, B. Lévêque and A. Pinlou, 2 -distance coloring of sparse graphs, J. Graph Theory 77 (2014) 190–218. doi:10.1002/jgt.21782
[2] R.A. Brualdi and J.J. Quinn Massey, Incidence and strong edge colorings of graphs, Discrete Math. 122 (1993) 51–58. doi:10.1016/0012-365X(93)90286-3
[3] B. Guiduli, On incidence coloring and star arboricity of graphs, Discrete Math. 163 (1997) 275–278. doi:10.1016/0012-365X(95)00342-T
[4] S.L. Hakimi, J. Mitchem and E. Schmeichel, Star arboricity of graphs, Discrete Math. 149 (1996) 93–98. doi:10.1016/0012-365X(94)00313-8
[5] M. Hosseini Dolama, É. Sopena and X. Zhu, Incidence coloring of k-degenerated graphs, Discrete Math. 283 (2004) 121–128. doi:10.1016/j.disc.2004.01.015
[6] M. Hosseini Dolama and É. Sopena, On the maximum average degree and the incidence chromatic number of a graph, Discrete Math. Theor. Comput. Sci. 7 (2005) 203–216.
[7] D.P. Sanders and Y. Zhao, Planar graphs of maximum degree seven are class I, J. Combin. Theory Ser. B 83 (2001) 201–212. doi:10.1006/jctb.2001.2047
[8] D. Yang, Fractional incidence coloring and star arboricity of graphs, Ars Combin. 105 (2012) 213–224.