On Total H-Irregularity Strength of the Disjoint Union of Graphs
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 181-194.

Voir la notice de l'article provenant de la source Library of Science

A simple graph G admits an H-covering if every edge in E(G) belongs to at least to one subgraph of G isomorphic to a given graph H. For the subgraph H ⊆ G under a total k-labeling we define the associated H-weight as the sum of labels of all vertices and edges belonging to H. The total k-labeling is called the H-irregular total k-labeling of a graph G admitting an H-covering if all subgraphs of G isomorphic to H have distinct weights. The total H-irregularity strength of a graph G is the smallest integer k such that G has an H-irregular total k-labeling. In this paper, we estimate lower and upper bounds on the total H-irregularity strength for the disjoint union of multiple copies of a graph and the disjoint union of two non-isomorphic graphs. We also prove the sharpness of the upper bounds.
Keywords: H -covering, H -irregular labeling, total H -irregularity strength, copies of graphs, union of graphs
@article{DMGT_2020_40_1_a11,
     author = {Ashraf, Faraha and L\'opez, Susana Clara and Muntaner-Batle, Francesc Antoni and Oshima, Akito and Ba\v{c}a, Martin and Semani\v{c}ov\'a-Fe\v{n}ov\v{c}{\'\i}kov\'a, Andrea},
     title = {On {Total} {H-Irregularity} {Strength} of the {Disjoint} {Union} of {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {181--194},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a11/}
}
TY  - JOUR
AU  - Ashraf, Faraha
AU  - López, Susana Clara
AU  - Muntaner-Batle, Francesc Antoni
AU  - Oshima, Akito
AU  - Bača, Martin
AU  - Semaničová-Feňovčíková, Andrea
TI  - On Total H-Irregularity Strength of the Disjoint Union of Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 181
EP  - 194
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a11/
LA  - en
ID  - DMGT_2020_40_1_a11
ER  - 
%0 Journal Article
%A Ashraf, Faraha
%A López, Susana Clara
%A Muntaner-Batle, Francesc Antoni
%A Oshima, Akito
%A Bača, Martin
%A Semaničová-Feňovčíková, Andrea
%T On Total H-Irregularity Strength of the Disjoint Union of Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 181-194
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a11/
%G en
%F DMGT_2020_40_1_a11
Ashraf, Faraha; López, Susana Clara; Muntaner-Batle, Francesc Antoni; Oshima, Akito; Bača, Martin; Semaničová-Feňovčíková, Andrea. On Total H-Irregularity Strength of the Disjoint Union of Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 181-194. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a11/

[1] A. Ahmad and M. Bača, On vertex irregular total labelings, Ars Combin. 112 (2013) 129–139.

[2] A. Ahmad and M. Bača, Total edge irregularity strength of a categorical product of two paths, Ars Combin. 114 (2014) 203–212.

[3] A. Ahmad, M. Bača and Y. Bashir, Total vertex irregularity strength of certain classes of unicyclic graphs, Bull. Math. Soc. Sci. Math. Roumanie 57 (2014) 147–152.

[4] A. Ahmad, M. Bača and M.K. Siddiqui, On edge irregular total labeling of categorical product of two cycles, Theory Comput. Syst. 54 (2014) 1–12. doi:10.1007/s00224-013-9470-3

[5] M. Anholcer, M. Kalkowski and J. Przybyło, A new upper bound for the total vertex irregularity strength of graphs, Discrete Math. 309 (2009) 6316–6317. doi:10.1016/j.disc.2009.05.023

[6] M. Anholcer and C. Palmer, Irregular labellings of Circulant graphs, Discrete Math. 312 (2012) 3461–3466. doi:10.1016/j.disc.2012.06.017

[7] F. Ashraf, M. Bača, M. Lascsáková and A. Semaničová-Feňovčíková, On H-irregularity strength of graphs, Discuss. Math. Graph Theory 37 (2017) 1067–1078. doi:10.7151/dmgt.1980

[8] M. Bača, S. Jendrol’, M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007) 1378–1388. doi:10.1016/j.disc.2005.11.075

[9] M. Bača and M.K. Siddiqui, Total edge irregularity strength of generalized prism, Appl. Math. Comput. 235 (2014) 168–173. doi:10.1016/j.amc.2014.03.001

[10] S. Brandt, J. Miškuf and D. Rautenbach, On a conjecture about edge irregular total labellings, J. Graph Theory 57 (2008) 333–343. doi:10.1002/jgt.20287

[11] K.N.M. Haque, Irregular total labellings of generalized Petersen graphs, Theory Comput. Syst. 50 (2012) 537–544. doi:0.1007/s00224-011-9350-7

[12] J. Ivančo and S. Jendrol’, Total edge irregularity strength of trees, Discuss. Math. Graph Theory 26 (2006) 449–456. doi:10.7151/dmgt.1337

[13] S. Jendrol’, J. Miškuf and R. Soták, Total edge irregularity strength of complete and complete bipartite graphs, Electron. Notes Discrete Math. 28 (2007) 281–285. doi:10.1016/j.endm.2007.01.041

[14] S. Jendrol’, J. Miškuf and R. Soták, Total edge irregularity strength of complete graphs and complete bipartite graphs, Discrete Math. 310 (2010) 400–407. doi:10.1016/j.disc.2009.03.006

[15] P. Majerski and J. Przybyło, Total vertex irregularity strength of dense graphs, J. Graph Theory 76 (2014) 34–41. doi:10.1002/jgt.21748

[16] Nurdin, A.N.M. Salman and E.T. Baskoro, The total edge-irregular strengths of the corona product of paths with some graphs, J. Combin. Math. Combin. Comput. 65 (2008) 163–175.

[17] J. Przybyło, Linear bound on the irregularity strength and the total vertex irregularity strength of graphs, SIAM J. Discrete Math. 23 (2009) 511–516. doi:0.1137/070707385

[18] R. Ramdani, A.N.M. Salman, H. Assiyatum, A. Semaničová-Feňovčíková and M. Bača, On the total irregularity strength of disjoint union of arbitrary graphs, Math. Rep. 18 (2016) 469–482.