Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_4_a7, author = {Taranchuk, Vladislav}, title = {Pancyclicity {When} {Each} {Cycle} {Contains} k {Chords}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {867--879}, publisher = {mathdoc}, volume = {39}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a7/} }
Taranchuk, Vladislav. Pancyclicity When Each Cycle Contains k Chords. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 867-879. http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a7/
[1] F. Affif Chaouche, C. Rutherford and R. Whitty, Pancyclicity when each cycle must pass exactly k Hamilton cycle chords, Discuss. Math. Graph Theory 35 (2015) 533–539. doi:10.7151/dmgt.1818
[2] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory Ser. B 11 (1971) 80–84. doi:10.1016/0095-8956(71)90016-5
[3] H.J. Broersma, A note on the minimum size of a vertex pancyclic graph, Discrete Math. 164 (1997) 29–32. doi:10.1016/S0012-365X(96)00040-4
[4] J.C. George, A. Khodkar and W.D. Wallis, Pancyclic and Bipancyclic Graphs, 1st Ed. (Springer Briefs in Mathematics, Springer, 2016).
[5] S. Griffin, Minimal pancyclicity . arXiv: 1312.0274v1 1 Dec 2013.
[6] D.B. West, Introduction to Graph Theory, 2nd Edition (Pearson Education, Inc., 2001).