About (k, l)-Kernels, Semikernels and Grundy Functions in Partial Line Digraphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 855-856

Voir la notice de l'article provenant de la source Library of Science

Let D be a digraph of minimum in-degree at least 1. We prove that for any two natural numbers k, l such that 1 ≤ l ≤ k, the number of (k, l)-kernels of D is less than or equal to the number of (k, l)-kernels of any partial line digraph ℒD. Moreover, if l lt; k and the girth of D is at least l +1, then these two numbers are equal. We also prove that the number of semikernels of D is equal to the number of semikernels of ℒD. Furthermore, we introduce the concept of (k, l)-Grundy function as a generalization of the concept of Grundy function and we prove that the number of (k, l)-Grundy functions of D is equal to the number of (k, l)-Grundy functions of any partial line digraph ℒD.
Keywords: digraphs, in-domination, kernel, Grundy function
@article{DMGT_2019_39_4_a6,
     author = {Balbuena, C. and Galeana-S\'anchez, H. and Guevara, M.},
     title = {About (k, {l)-Kernels,} {Semikernels} and {Grundy} {Functions} in {Partial} {Line} {Digraphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {855--856},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a6/}
}
TY  - JOUR
AU  - Balbuena, C.
AU  - Galeana-Sánchez, H.
AU  - Guevara, M.
TI  - About (k, l)-Kernels, Semikernels and Grundy Functions in Partial Line Digraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 855
EP  - 856
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a6/
LA  - en
ID  - DMGT_2019_39_4_a6
ER  - 
%0 Journal Article
%A Balbuena, C.
%A Galeana-Sánchez, H.
%A Guevara, M.
%T About (k, l)-Kernels, Semikernels and Grundy Functions in Partial Line Digraphs
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 855-856
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a6/
%G en
%F DMGT_2019_39_4_a6
Balbuena, C.; Galeana-Sánchez, H.; Guevara, M. About (k, l)-Kernels, Semikernels and Grundy Functions in Partial Line Digraphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 855-856. http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a6/