Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_4_a6, author = {Balbuena, C. and Galeana-S\'anchez, H. and Guevara, M.}, title = {About (k, {l)-Kernels,} {Semikernels} and {Grundy} {Functions} in {Partial} {Line} {Digraphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {855--856}, publisher = {mathdoc}, volume = {39}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a6/} }
TY - JOUR AU - Balbuena, C. AU - Galeana-Sánchez, H. AU - Guevara, M. TI - About (k, l)-Kernels, Semikernels and Grundy Functions in Partial Line Digraphs JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 855 EP - 856 VL - 39 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a6/ LA - en ID - DMGT_2019_39_4_a6 ER -
%0 Journal Article %A Balbuena, C. %A Galeana-Sánchez, H. %A Guevara, M. %T About (k, l)-Kernels, Semikernels and Grundy Functions in Partial Line Digraphs %J Discussiones Mathematicae. Graph Theory %D 2019 %P 855-856 %V 39 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a6/ %G en %F DMGT_2019_39_4_a6
Balbuena, C.; Galeana-Sánchez, H.; Guevara, M. About (k, l)-Kernels, Semikernels and Grundy Functions in Partial Line Digraphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 855-856. http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a6/
[1] M. Aigner, On the linegraph of a directed graph, Math. Z. 102 (1967) 56–61. doi:10.1007/BF01110285
[2] C. Balbuena and M. Guevara, Kernels and partial line digraphs, Appl. Math. Lett. 23 (2010) 1218–1220. doi:10.1016/j.aml.2010.06.001
[3] C. Berge, Graphs, (North Holland, 1985) Chapter 14.
[4] E. Boros and V. Gurvich, Perfect Graphs, Kernels and Cores of Cooperative Games (RUTCOR Research Report 12, Rutgers University, 2003).
[5] M.A. Fiol, J.L.A. Yebra and I. Alegre, Line digraph iterations and the ( d, k ) problem, IEEE Trans. Comput. 33 (1984) 400–403. doi:10.1109/TC.1984.1676455
[6] M.A. Fiol and A.S. Lladó, The partial line digraph technique in the design of large interconnection networks, IEEE Trans. Comput. 41 (1992) 848–857. doi:10.1109/12.256453
[7] A.S. Fraenkel, Combinatorial games: selected bibliography with a succinct gourmet introduction, Electron. J. Combin. (2012) #DS2.
[8] H. Galeana-Sánchez and C. Herńandez-Cruz, On the existence of ( k, l ) -kernels in infinite digraphs: a survey, Discuss. Math. Graph Theory 34 (2014) 431–466. doi:10.7151/dmgt.1747
[9] H. Galeana-Sánchez and X. Li, Semikernels and ( k, l ) -kernels in digraphs, SIAM J. Discrete Math. 11 (1998) 340–346. doi:10.1137/S0895480195291370
[10] H. Galeana-Sánchez, L. Pastrana-Ramírez and H.A. Rincón-Mejía, Semikernels, quasi kernels, and Grundy function in the line digraph, SIAM J. Discrete Math. 4 (1991) 80–83. doi:10.1137/0404008
[11] M. Harminc, Solutions and kernels of a directed graph, Math. Slovaca 32 (1982) 263–267.
[12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced topics (Marcel Dekker, New York, 1998).
[13] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944).
[14] V. Neumann-Lara, Seminúcleos de una digráfica, Anales del Instituto de Matemáticas de la Universidad Nacional Autónoma de México II (1971) 55–62.
[15] H. Prodinger and R.F. Tichy, Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982) 16–21.
[16] L. Qin, S. Er-fang and Z. Min, ( k, l ) -kernels in line digraphs, J. Shanghai Univ. 10 (2006) 484–486. doi:10.1007/s11741-006-0042-5
[17] S.M. Reddy, J.G. Kuhl, S.H. Hosseini and H. Lee, On digraphs with minimum diam- eter and maximum connectivity, in: Proc. 20th Annual Allerton Conference (1982) 1018–1026.
[18] W. Szummy, A. Włoch and I. Włoch, On ( k, l ) -kernels in D-join of digraphs, Discuss. Math. Graph Theory. 27 (2007) 457–470. doi:10.7151/dmgt.1373
[19] W. Szummy, A. Włoch and I. Włoch, On the existence and on the number of ( k, l ) - kernels in the lexicographic product of graphs, Discrete Math. 308 (2008) 4616–4624. doi:10.1016/j.disc.2007.08.078
[20] A. Włoch and I. Włoch, On ( k, l ) -kernels in the corona of digraphs, Int. J. Pure Appl. Math. 53 (2009) 571–581.