Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_4_a5, author = {Abrishami, Gholamreza and Henning, Michael A. and Rahbarnia, Freydoon}, title = {On {Independent} {Domination} in {Planar} {Cubic} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {841--853}, publisher = {mathdoc}, volume = {39}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a5/} }
TY - JOUR AU - Abrishami, Gholamreza AU - Henning, Michael A. AU - Rahbarnia, Freydoon TI - On Independent Domination in Planar Cubic Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 841 EP - 853 VL - 39 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a5/ LA - en ID - DMGT_2019_39_4_a5 ER -
%0 Journal Article %A Abrishami, Gholamreza %A Henning, Michael A. %A Rahbarnia, Freydoon %T On Independent Domination in Planar Cubic Graphs %J Discussiones Mathematicae. Graph Theory %D 2019 %P 841-853 %V 39 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a5/ %G en %F DMGT_2019_39_4_a5
Abrishami, Gholamreza; Henning, Michael A.; Rahbarnia, Freydoon. On Independent Domination in Planar Cubic Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 841-853. http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a5/
[1] C. Barefoot, F. Harary and K.F. Jones, What is the difference between the domi- nation and independent domination numbers of a cubic graph?, Graphs Combin. 7 (1991) 205–208. doi:10.1007/BF01788145
[2] P. Dorbec, M.A. Henning, M. Montassier and J. Southey, Independent domination in cubic graphs, J. Graph Theory 80 (2015) 329–349. doi:10.1002/jgt.21855
[3] W. Goddard and M.A. Henning, Independent domination in graphs: A survey and recent results, Discrete Math. 313 (2013) 839–854. doi:10.1016/j.disc.2012.11.031
[4] W. Goddard, M. A. Henning, J. Lyle and J. Southey, On the independent domination number of regular graphs, Ann. Comb. 16 (2012) 719–732. doi:10.1007/s00026-012-0155-4
[5] W. Goddard and J. Lyle, Independent dominating sets in triangle-free graphs, J. Comb. Optim. 23 (2012) 9–20. doi:10.1007/s10878-010-9336-4
[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc. New York, 1998).
[7] M.A. Henning, C. Löwenstein and D. Rautenbach, Independent domination in sub- cubic bipartite graphs of girth at least six, Discrete Appl. Math. 162 (2014) 399–403. doi:10.1016/j.dam.2013.08.035
[8] A.V. Kostochka, The independent domination number of a cubic 3 -connected graph can be much larger than its domination number, Graphs Combin. 9 (1993) 235–237. doi:10.1007/BF02988312
[9] P.C.B. Lam, W.C. Shiu and L. Sun, On independent domination number of regular graphs, Discrete Math. 202 (1999) 135–144. doi:10.1016/S0012-365X(98)00350-1
[10] J. Lyle, A note on independent sets in graphs with large minimum degree and small cliques, Electron. J. Combin. 21 (2014) #P2.38.
[11] O. Ore, Theory of graphs, Amer. Math. Soc. Transl. 38 (1962) 206–212. doi:10.1090/coll/038
[12] J. Southey and M.A. Henning, Domination versus independent domination in cubic graphs, Discrete Math. 313 (2013) 1212–1220. doi:10.1016/j.disc.2012.01.003
[13] T. Zhu and B. Wu, Domination of maximal K4-minor free graphs and maximal K2,3-minor free graphs, and disproofs of two conjectures on planar graphs, Discrete Appl. Math. 194 (2015) 147–153. doi:10.1016/j.dam.2015.05.029