Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_4_a3, author = {Bunge, Ryan C. and Darrow, Brian D. and Dubczuk, Toni M. and El-Zanati, Saad I. and Hao, Hanson H. and Keller, Gregory L. and Newkirk, Genevieve A. and Roberts, Dan P.}, title = {On {Decomposing} the {Complete} {Symmetric} {Digraph} into {Orientations} of {K\protect\textsubscript{4}} \ensuremath{-} e}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {815--828}, publisher = {mathdoc}, volume = {39}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a3/} }
TY - JOUR AU - Bunge, Ryan C. AU - Darrow, Brian D. AU - Dubczuk, Toni M. AU - El-Zanati, Saad I. AU - Hao, Hanson H. AU - Keller, Gregory L. AU - Newkirk, Genevieve A. AU - Roberts, Dan P. TI - On Decomposing the Complete Symmetric Digraph into Orientations of K4 − e JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 815 EP - 828 VL - 39 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a3/ LA - en ID - DMGT_2019_39_4_a3 ER -
%0 Journal Article %A Bunge, Ryan C. %A Darrow, Brian D. %A Dubczuk, Toni M. %A El-Zanati, Saad I. %A Hao, Hanson H. %A Keller, Gregory L. %A Newkirk, Genevieve A. %A Roberts, Dan P. %T On Decomposing the Complete Symmetric Digraph into Orientations of K4 − e %J Discussiones Mathematicae. Graph Theory %D 2019 %P 815-828 %V 39 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a3/ %G en %F DMGT_2019_39_4_a3
Bunge, Ryan C.; Darrow, Brian D.; Dubczuk, Toni M.; El-Zanati, Saad I.; Hao, Hanson H.; Keller, Gregory L.; Newkirk, Genevieve A.; Roberts, Dan P. On Decomposing the Complete Symmetric Digraph into Orientations of K4 − e. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 815-828. http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a3/
[1] R.J.R. Abel, F.E. Bennett and M. Greig, PBD-Closure, in: Handbook of Combinatorial Designs, 2nd Ed., C.J. Colbourn and J.H. Dinitz (Eds), (Chapman & Hall/CRC Press, Boca Raton, FL, 2007) 246–254.
[2] P. Adams, D. Bryant and M. Buchanan, A survey on the existence of G-designs, J. Combin. Des. 16 (2008) 373–410. doi:10.1002/jcd.20170
[3] J.-C. Bermond, C. Huang, A. Rosa and D. Sotteau, Decomposition of complete graphs into isomorphic subgraphs with five vertices, Ars Combin. 10 (1980) 211–254.
[4] J.-C. Bermond and J. Schönheim, G-decomposition of Kn, where G has four vertices or less, Discrete Math. 19 (1977) 113–120. doi:10.1016/0012-365X(77)90027-9
[5] D. Bryant and S. El-Zanati, Graph decompositions, in: Handbook of Combinatorial Designs, 2nd Ed., C.J. Colbourn and J.H. Dinitz (Eds), (Chapman & Hall/CRC Press, Boca Raton, FL, 2007) 477–486.
[6] R.C. Bunge, C.J. Cowan, L.J. Cross, S.I. El-Zanati, A.E. Hart, D.P. Roberts and A.M. Youngblood, Decompositions of complete digraphs into small tripartite digraphs, J. Combin. Math. Combin. Comput., to appear.
[7] R.C. Bunge, S.I. El-Zanati, H.J. Fry, K.S. Krauss, D.P. Roberts, C.A. Sullivan, A.A. Unsicker and N.E. Witt, On the spectra of bipartite directed subgraphs of K<sub4</sub><sup>*</sup>, J. Combin. Math. Combin. Comput. 98 (2016) 375–390.
[8] C.J. Colbourn and J.H. Dinitz, Handbook of Combinatorial Designs, 2nd Ed., (Chapman & Hall/CRC Press, Boca Raton, FL, 2007).
[9] G. Ge, Group divisible designs, in: Handbook of Combinatorial Designs, 2nd Ed., C.J. Colbourn and J.H. Dinitz (Eds.), (Chapman & Hall/CRC Press, Boca Raton, FL, 2007) 255–260.
[10] G. Ge, S. Hu, E. Kolotoğlu and H. Wei, A complete solution to spectrum problem for five-vertex graphs with application to traffic grooming in optical networks, J. Combin. Des. 23 (2015) 233–273. doi:10.1002/jcd.21405
[11] A. Hartman and E. Mendelsohn, The last of the triple systems, Ars Combin. 22 (1986) 25–41.
[12] D.G. Hoffman and K. Kirkpatrick, G-designs of order n and index λ where G has 5 vertices or less, Australas. J. Combin. 18 (1998) 13–37.
[13] R.C. Read and R.J. Wilson, An Atlas of Graphs, (Oxford University Press, Oxford, 1998).
[14] R. Wilson, Construction and uses of pairwise balanced designs, Math. Centre Tracts. 55 (1974) 18–41.