On Decomposing the Complete Symmetric Digraph into Orientations of K4 − e
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 815-828.

Voir la notice de l'article provenant de la source Library of Science

Let D be any of the 10 digraphs obtained by orienting the edges of K_4 − e. We establish necessary and sufficient conditions for the existence of a (K_n^*, D)-design for 8 of these digraphs. Partial results as well as some nonexistence results are established for the remaining 2 digraphs.
Keywords: digraph decompositions, orientations of K 4 − e
@article{DMGT_2019_39_4_a3,
     author = {Bunge, Ryan C. and Darrow, Brian D. and Dubczuk, Toni M. and El-Zanati, Saad I. and Hao, Hanson H. and Keller, Gregory L. and Newkirk, Genevieve A. and Roberts, Dan P.},
     title = {On {Decomposing} the {Complete} {Symmetric} {Digraph} into {Orientations} of {K\protect\textsubscript{4}} \ensuremath{-} e},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {815--828},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a3/}
}
TY  - JOUR
AU  - Bunge, Ryan C.
AU  - Darrow, Brian D.
AU  - Dubczuk, Toni M.
AU  - El-Zanati, Saad I.
AU  - Hao, Hanson H.
AU  - Keller, Gregory L.
AU  - Newkirk, Genevieve A.
AU  - Roberts, Dan P.
TI  - On Decomposing the Complete Symmetric Digraph into Orientations of K4 − e
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 815
EP  - 828
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a3/
LA  - en
ID  - DMGT_2019_39_4_a3
ER  - 
%0 Journal Article
%A Bunge, Ryan C.
%A Darrow, Brian D.
%A Dubczuk, Toni M.
%A El-Zanati, Saad I.
%A Hao, Hanson H.
%A Keller, Gregory L.
%A Newkirk, Genevieve A.
%A Roberts, Dan P.
%T On Decomposing the Complete Symmetric Digraph into Orientations of K4 − e
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 815-828
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a3/
%G en
%F DMGT_2019_39_4_a3
Bunge, Ryan C.; Darrow, Brian D.; Dubczuk, Toni M.; El-Zanati, Saad I.; Hao, Hanson H.; Keller, Gregory L.; Newkirk, Genevieve A.; Roberts, Dan P. On Decomposing the Complete Symmetric Digraph into Orientations of K4 − e. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 815-828. http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a3/

[1] R.J.R. Abel, F.E. Bennett and M. Greig, PBD-Closure, in: Handbook of Combinatorial Designs, 2nd Ed., C.J. Colbourn and J.H. Dinitz (Eds), (Chapman & Hall/CRC Press, Boca Raton, FL, 2007) 246–254.

[2] P. Adams, D. Bryant and M. Buchanan, A survey on the existence of G-designs, J. Combin. Des. 16 (2008) 373–410. doi:10.1002/jcd.20170

[3] J.-C. Bermond, C. Huang, A. Rosa and D. Sotteau, Decomposition of complete graphs into isomorphic subgraphs with five vertices, Ars Combin. 10 (1980) 211–254.

[4] J.-C. Bermond and J. Schönheim, G-decomposition of Kn, where G has four vertices or less, Discrete Math. 19 (1977) 113–120. doi:10.1016/0012-365X(77)90027-9

[5] D. Bryant and S. El-Zanati, Graph decompositions, in: Handbook of Combinatorial Designs, 2nd Ed., C.J. Colbourn and J.H. Dinitz (Eds), (Chapman & Hall/CRC Press, Boca Raton, FL, 2007) 477–486.

[6] R.C. Bunge, C.J. Cowan, L.J. Cross, S.I. El-Zanati, A.E. Hart, D.P. Roberts and A.M. Youngblood, Decompositions of complete digraphs into small tripartite digraphs, J. Combin. Math. Combin. Comput., to appear.

[7] R.C. Bunge, S.I. El-Zanati, H.J. Fry, K.S. Krauss, D.P. Roberts, C.A. Sullivan, A.A. Unsicker and N.E. Witt, On the spectra of bipartite directed subgraphs of K<sub4</sub><sup>*</sup>, J. Combin. Math. Combin. Comput. 98 (2016) 375–390.

[8] C.J. Colbourn and J.H. Dinitz, Handbook of Combinatorial Designs, 2nd Ed., (Chapman & Hall/CRC Press, Boca Raton, FL, 2007).

[9] G. Ge, Group divisible designs, in: Handbook of Combinatorial Designs, 2nd Ed., C.J. Colbourn and J.H. Dinitz (Eds.), (Chapman & Hall/CRC Press, Boca Raton, FL, 2007) 255–260.

[10] G. Ge, S. Hu, E. Kolotoğlu and H. Wei, A complete solution to spectrum problem for five-vertex graphs with application to traffic grooming in optical networks, J. Combin. Des. 23 (2015) 233–273. doi:10.1002/jcd.21405

[11] A. Hartman and E. Mendelsohn, The last of the triple systems, Ars Combin. 22 (1986) 25–41.

[12] D.G. Hoffman and K. Kirkpatrick, G-designs of order n and index λ where G has 5 vertices or less, Australas. J. Combin. 18 (1998) 13–37.

[13] R.C. Read and R.J. Wilson, An Atlas of Graphs, (Oxford University Press, Oxford, 1998).

[14] R. Wilson, Construction and uses of pairwise balanced designs, Math. Centre Tracts. 55 (1974) 18–41.