Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_4_a1, author = {Ahangar, H. Abdollahzadeh and Amjadi, J. and Chellali, M. and Nazari-Moghaddam, S. and Sheikholeslami, S.M.}, title = {Total {Roman} {Reinforcement} in {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {787--803}, publisher = {mathdoc}, volume = {39}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a1/} }
TY - JOUR AU - Ahangar, H. Abdollahzadeh AU - Amjadi, J. AU - Chellali, M. AU - Nazari-Moghaddam, S. AU - Sheikholeslami, S.M. TI - Total Roman Reinforcement in Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 787 EP - 803 VL - 39 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a1/ LA - en ID - DMGT_2019_39_4_a1 ER -
%0 Journal Article %A Ahangar, H. Abdollahzadeh %A Amjadi, J. %A Chellali, M. %A Nazari-Moghaddam, S. %A Sheikholeslami, S.M. %T Total Roman Reinforcement in Graphs %J Discussiones Mathematicae. Graph Theory %D 2019 %P 787-803 %V 39 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a1/ %G en %F DMGT_2019_39_4_a1
Ahangar, H. Abdollahzadeh; Amjadi, J.; Chellali, M.; Nazari-Moghaddam, S.; Sheikholeslami, S.M. Total Roman Reinforcement in Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 787-803. http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a1/
[1] H. Abdollahzadeh Ahangar, J. Amjadi, S.M. Sheikholeslami and M. Soroudi, On the total Roman domination number of graphs, Ars Combin., to appear.
[2] H. Abdollahzadeh Ahangar, M.A. Henning, V. Samodivkin and I.G. Yero, Total Roman domination in graphs, Appl. Anal. Discrete Math. 10 (2016) 501–517. doi:10.2298/AADM160802017A
[3] J. Amjadi, S. Nazari-Moghaddam and S.M. Sheikholeslami, Global total Roman domination in graphs, Discrete Math. Algorithms Appl. 9 (2017) ID: 1750050. doi:10.1142/S1793830917500501
[4] J. Amjadi, S.M. Sheikholeslami and M. Soroudi, Nordhaus-Gaddum bounds for total Roman domination, J. Comb. Optim. 35 (2018) 126–133. doi:10.1007/s10878-017-0158-5
[5] J. Amjadi, S. Nazari-Moghaddam and S.M. Sheikholeslami and L. Volkmann, Total Roman domination number of trees, Australas. J. Combin. 69 (2017) 271–285.
[6] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211–219. doi:10.1002/net.3230100304
[7] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22. doi:10.1016/j.disc.2003.06.004
[8] O. Favaron, H. Karami, R. Khoeilar, and S.M. Sheikholeslami, On the Roman domination number of a graph, Discrete Math. 309 (2009) 3447–3451. doi:10.1016/j.disc.2008.09.043
[9] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, (Freeman, San Francisco, 1979).
[10] M.A. Henning, A survey on selected recent results on total domination in graphs, Discrete Math. 309 (2009) 32–63. doi:10.1016/j.disc.2007.12.044
[11] M.A. Henning, N. Jafari Rad and J. Raczek, A note on total reinforcement in graphs, Discrete Appl. Math. 159 (2011), 1443–1446. doi:10.1016/j.dam.2011.04.024
[12] M.A. Henning and A. Yeo, Total Domination in Graphs (Springer, New York, 2013). doi:10.1007/978-1-4614-6525-6
[13] N. Jafari Rad and S. Sheikholeslami, Roman reinforcement in graphs, Bull. Inst. Combin. Appl. 61 (2011) 81–90.
[14] C.-H. Liu and G.J. Chang, Roman domination on 2 -connected graphs, SIAM J. Discrete Math. 26 (2012) 193–205. doi:10.1137/080733085
[15] C.-H. Liu and G.J. Chang, Upper bounds on Roman domination numbers of graphs, Discrete Math. 312 (2012) 1386–1391. doi:10.1016/j.disc.2011.12.021
[16] C.-H. Liu and G.J. Chang, Roman domination on strongly chordal graphs, J. Comb. Optim. 26 (2013) 608–619. doi:10.1007/s10878-012-9482-y
[17] P. Pavlič and J. Žerovnik, Roman domination number of the Cartesian products of paths and cycles, Electron. J. Combin. 19 (3) (2012) #P19.
[18] C.S. Revelle and K.E. Rosing, Defendens Imperium Romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000) 585–594. doi:10.1080/00029890.2000.12005243
[19] N. Sridharan, M.D. Elias and V.S.A. Subramanian, Total reinforcement number of a graph, AKCE Int. J. Graphs Comb. 4 (2007) 197–202.
[20] I. Stewart, Defend the Roman Empire, Sci. Amer. 281 (1999) 136–139. doi:10.1038/scientificamerican1299-136
[21] I.G. Yero and J.A. Rodríguez-Velázquez, Roman domination in Cartesian product graphs and strong product graphs, Appl. Anal. Discrete Math. 7 (2013) 262–274. doi:10.2298/AADM130813017G