Hamiltonian Normal Cayley Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 3, pp. 731-740

Voir la notice de l'article provenant de la source Library of Science

A variant of the Lovász Conjecture on hamiltonian paths states that every finite connected Cayley graph contains a hamiltonian cycle. Given a finite group G and a connection set S, the Cayley graph Cay(G, S) will be called normal if for every g ∈ G we have that g−1Sg = S. In this paper we present some conditions on the connection set of a normal Cayley graph which imply the existence of a hamiltonian cycle in the graph.
Keywords: Cayley graph, hamiltonian cycle, normal connection set
@article{DMGT_2019_39_3_a8,
     author = {Montellano-Ballesteros, Juan Jos\'e and Arguello, Anahy Santiago},
     title = {Hamiltonian {Normal} {Cayley} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {731--740},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a8/}
}
TY  - JOUR
AU  - Montellano-Ballesteros, Juan José
AU  - Arguello, Anahy Santiago
TI  - Hamiltonian Normal Cayley Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 731
EP  - 740
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a8/
LA  - en
ID  - DMGT_2019_39_3_a8
ER  - 
%0 Journal Article
%A Montellano-Ballesteros, Juan José
%A Arguello, Anahy Santiago
%T Hamiltonian Normal Cayley Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 731-740
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a8/
%G en
%F DMGT_2019_39_3_a8
Montellano-Ballesteros, Juan José; Arguello, Anahy Santiago. Hamiltonian Normal Cayley Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 3, pp. 731-740. http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a8/