Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_3_a7, author = {Marinescu-Ghemeci, Ruxandra}, title = {On {Radio} {Connection} {Number} of {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {705--730}, publisher = {mathdoc}, volume = {39}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a7/} }
Marinescu-Ghemeci, Ruxandra. On Radio Connection Number of Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 3, pp. 705-730. http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a7/
[1] E. Andrews, E. Laforge, C. Lumduanhom and P. Zhang, On proper-path colorings in graphs, J. Combin. Math. Combin. Comput. 97 (2016) 189–207.
[2] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero and Zs. Tuza, Proper connection of graphs, Discrete Math. 312 (2012) 2550–2560. doi:10.1016/j.disc.2011.09.003
[3] T. Calamoneri, The L ( h, k ) -labelling problem: An updated survey and annotated bibliography, Comput. J. 54 (2011) 1344–1371. doi:10.1093/comjnl/bxr037
[4] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 5–8.
[5] G. Chartrand, P. Zhang, Chromatic Graph Theory (Chapman and Hall/CRC, 2008). doi:10.1201/9781584888017
[6] G. Chartrand and P. Zhang, Radio colorings of graph—a survey, Int. J. Comput. Appl. Math. 2 (2007) 237–252.
[7] J.R. Griggs and R.K. Yeh, Labeling graphs with a condition at distance 2, SIAM J. Discrete Math. 5 (1992) 586–595. doi:10.1137/0405048
[8] W.K. Hale, Frequency assignment: theory and applications, Proc. IEEE 68 (1980) 1497–1514. doi:10.1109/PROC.1980.11899
[9] T. Hasunuma, T. Ishii, H. Ono and Y. Uno, A linear time algorithm for L (2, 1) - labeling of trees, Algorithmica 66 (2013) 654–681. doi:10.1007/s00453-012-9657-z
[10] H. Jiang, X. Li, Y. Zhang and Y. Zhao, On ( strong ) proper vertex-connection of graphs, Bull. Malays. Math. Sci. Soc. 41 (2018) 415–425. doi:10.1007/s40840-015-0271-5
[11] M. Krivelevich and R. Yuster, The rainbow connection of a graph is ( at most ) reciprocal to its minimum degree, J. Graph Theory 63 (2009) 185–191. doi:10.1002/jgt.20418
[12] X. Li, C. Magnant, M. Wei and X. Zhu, Distance proper connection of graphs . arXiv:1606.06547
[13] D. Liu and X. Zhu, Multi-level distance labelings for paths and cycles, SIAM J. Discrete Math. 19 (2005) 610–621. doi:10.1137/S0895480102417768
[14] D.B. West, Introduction to Graph Theory, Second Edition (Prentice Hall, 2001).