Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_3_a5, author = {Kaemawichanurat, Pawaton}, title = {Hamiltonicities of {Double} {Domination} {Critical} and {Stable} {Claw-Free} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {673--687}, publisher = {mathdoc}, volume = {39}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a5/} }
TY - JOUR AU - Kaemawichanurat, Pawaton TI - Hamiltonicities of Double Domination Critical and Stable Claw-Free Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 673 EP - 687 VL - 39 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a5/ LA - en ID - DMGT_2019_39_3_a5 ER -
Kaemawichanurat, Pawaton. Hamiltonicities of Double Domination Critical and Stable Claw-Free Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 3, pp. 673-687. http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a5/
[1] S. Ao, G. MacGillivray and J. Simmons, Hamiltonian properties of independent domination critical graphs, J. Combin. Math. Combin. Comput. 85 (2013) 107–128.
[2] J. Brousek, Z. Ryjáček and O. Favaron, Forbidden subgraphs, Hamiltonicity and closure in claw-free graphs, Discrete Math. 196 (1999) 29–50. doi:10.1016/S0012-365X(98)00334-3
[3] V. Chvátal, Tough graphs and Hamiltonian circuits, Discrete Math. 306 (2006) 910–917 (reprinted from Discrete Math. 5 (1973) 215–228). doi:10.1016/j.disc.2006.03.011
[4] M. Chellali and T.W. Haynes, Double domination stable graphs upon edge removal, Australas. J. Combin. 47 (2010) 157–164.
[5] O. Favaron, F. Tian and L. Zhang, Independence and Hamiltonicity in 3 -dominaion critical graphs, J. Graph Theory 25 (1997) 173–184. doi:10.1002/(SICI)1097-0118(199707)25:3h173::AID-JGT1i3.0.CO;2-I
[6] E. Flandrin, F. Tian, B. Wei and L. Zhang, Some properties of 3 -domination critical graphs, Discrete Math. 205 (1999) 65–76. doi:10.1016/S0012-365X(99)00038-2
[7] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997) 217–224. doi:10.1006/jctb.1996.1732
[8] P. Kaemawichanurat and L. Caccetta, Hamiltonicity of domination critical claw-free graphs, J. Combin. Math. Combin. Comput. 103 (2017) 39–62.
[9] P. Kaemawichanurat, L. Caccetta and W. Ananchuen, Hamiltonicities of connected domination critical graphs, Ars Combin. 136 (2018) 137–151.
[10] J. Simmons, Closure Operations and Hamitonian Properties of Independent and Total Domination Critical Graphs, Ph.D. Thesis (University of Victoria, 2005).
[11] D.P. Sumner and P. Blitch, Domination critical graphs, J. Combin. Theory Ser. B 34 (1983) 65–76. doi:10.1016/0095-8956(83)90007-2
[12] D.W. Thacker, Double Domination Edge Critical Graph, Master Thesis (East Tennessee State University, 2006).
[13] F. Tian, B. Wei and L. Zhang, Hamiltonicity in 3 -domination critical graphs with α = δ + 2, Discrete Appl. Math. 92 (1999) 57–70. doi:10.1016/S0166-218X(98)00149-8
[14] H.C. Wang and L.Y. Kang, Matching properties in double domination edge critical graphs, Discrete Math. Algorithms Appl. 2 (2010) 151–160. doi:10.1142/S1793830910000541
[15] H.C. Wang and E.F. Shan, Some matching properties in 4-γ×2-critical graphs, Comput. Math. Appl. 59 (2010) 694–699. doi:10.1016/j.camwa.2009.10.024
[16] H.C. Wang, E.F. Shan and Y.C. Zhao, 3 -factor criticality in double domination edge critical graphs, Graphs Combin. 32 (2016) 1599–1610. doi:10.1007/s00373-015-1670-y
[17] E. Wojcicka, Hamiltonian properties of domination critical graphs, J. Graph Theory 14 (1990) 205–215. doi:10.1002/jgt.3190140209
[18] W. Xiong, H.J. Lai, X. Ma, K. Wang and M. Zhang, Hamilton cycles in 3 -connected claw-free and net-free graphs, Discrete Math. 313 (2013) 784–795. doi:10.1016/j.disc.2012.12.016
[19] Y. Yuansheng, Z. Chengye, L. Xiaohui, J. Yongsong and H. Xin, Some 3 -connected 4 -edge critical non-Hamiltonian graphs, J. Graph Theory 50 (2005) 316–320. doi:10.1002/jgt.20114