On Selkow’s Bound on the Independence Number of Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 3, pp. 655-657
Cet article a éte moissonné depuis la source Library of Science
For a graph G with vertex set V (G) and independence number α (G), Selkow [A Probabilistic lower bound on the independence number of graphs, Discrete Math. 132 (1994) 363–365] established the famous lower bound ∑_ v ∈ V (G) 1d(v)+1 ( 1+ max{ d(v) d(v)+1 - ∑_ u ∈ N(v) 1 d(u)+1 ,0 } ) on α (G), where N(v) and d(v) = | N(v) | denote the neighborhood and the degree of a vertex v ∈ V (G), respectively. However, Selkow’s original proof of this result is incorrect. We give a new probabilistic proof of Selkow’s bound here.
Keywords:
graph, independence number
@article{DMGT_2019_39_3_a3,
author = {Harant, Jochen and Mohr, Samuel},
title = {On {Selkow{\textquoteright}s} {Bound} on the {Independence} {Number} of {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {655--657},
year = {2019},
volume = {39},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a3/}
}
Harant, Jochen; Mohr, Samuel. On Selkow’s Bound on the Independence Number of Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 3, pp. 655-657. http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a3/
[1] N. Alon and J.H. Spencer, The Probabilistic Method (Wiley, New York, 1992).
[2] Y. Caro, New Results on the Independence Number (Technical Report, Tel-Aviv University, 1979).
[3] S.M. Selkow, A Probabilistic lower bound on the independence number of graphs, Discrete Math. 132 (1994) 363–365. doi:10.1016/0012-365X(93)00102-B
[4] V.K. Wei, A Lower Bound on the Stability Number of a Simple Graph (Technical Memorandum, TM 81 - 11217 - 9, Bell laboratories, 1981).