Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_3_a10, author = {Silaban, Denny Riama and Baskoro, Edy Tri and Uttunggadewa, Saladin}, title = {On the {Restricted} {Size} {Ramsey} {Number} {Involving} a {Path} {P\protect\textsubscript{3}}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {757--769}, publisher = {mathdoc}, volume = {39}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a10/} }
TY - JOUR AU - Silaban, Denny Riama AU - Baskoro, Edy Tri AU - Uttunggadewa, Saladin TI - On the Restricted Size Ramsey Number Involving a Path P3 JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 757 EP - 769 VL - 39 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a10/ LA - en ID - DMGT_2019_39_3_a10 ER -
%0 Journal Article %A Silaban, Denny Riama %A Baskoro, Edy Tri %A Uttunggadewa, Saladin %T On the Restricted Size Ramsey Number Involving a Path P3 %J Discussiones Mathematicae. Graph Theory %D 2019 %P 757-769 %V 39 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a10/ %G en %F DMGT_2019_39_3_a10
Silaban, Denny Riama; Baskoro, Edy Tri; Uttunggadewa, Saladin. On the Restricted Size Ramsey Number Involving a Path P3. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 3, pp. 757-769. http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a10/
[1] H. Bielak, Remarks on the size Ramsey number of graphs, Period. Math. Hungar. 18 (1987) 27–38. doi:10.1007/BF01849031
[2] H. Bielak, Size Ramsey numbers for some regular graphs, Electron. Notes Discrete Math. 24 (2006) 39–45. doi:10.1016/j.endm.2006.06.007
[3] H. Bielak, Size Ramsey numbers for some regular graphs, Discrete Math. 309 (2009) 6446–6449. doi:10.1016/j.disc.2008.11.011
[4] S.A. Burr, A survey of noncomplete Ramsey theory for graphs, Ann. N.Y. Acad. Sci. 328 (1979) 58–75. doi:10.1111/j.1749-6632.1979.tb17768.x
[5] V. Chvátal and F. Harary, Generalized Ramsey theory for graphs, III. Small off-diagonal numbers, Pacific J. Math. 41 (1972) 335–345. doi:10.2140/pjm.1972.41.335
[6] R. Diestel, Graph Theory, 4 Edition (Springer-Verlag Heidelberg, New York, 2005).
[7] A. Dudek, F. Khoeini and P. Pralat, Size-Ramsey numbers of cycles versus a path, Discrete Math. 341 (2018) 2095–2103. doi:10.1016/j.disc.2018.04.008
[8] A. Dudek and P. Pralat, An alternative proof of the linearity of the size-Ramsey number of paths, Combin. Probab. Comput. 24 (2015) 551–555. doi:10.1017/S096354831400056X
[9] P. Erdős, R.J. Faudree, C.C. Rousseau and R. Schelp, The size Ramsey number, Period. Math. Hungar. 9 (1978) 145–161. doi:10.1007/BF02018930
[10] P. Erdős and R.J. Faudree, Size Ramsey function, in: Sets, graphs, and numbers, Colloq. Math. Soc. Janos Bolyai 60 (1991) 219–238.
[11] R.J. Faudree, C.C. Rousseau and J. Sheehan, A class of size Ramsey numbers involving stars, in: Graph Theory and Combinatorics - A Volume in Honor of Paul Erdős, B. Bollobás (Ed(s)), (Academic Press, London., 1984) 273–282.
[12] R.J. Faudree and R.H. Schelp, A survey of results on the size Ramsey number, in: Proc. of the Conference Paul Erdős and His Mathematics, Budapest 1999, Bolyai Soc. Math. Stud. 11 (2002) 291–309.
[13] R.J. Faudree and J. Sheehan, Size Ramsey numbers for small-order graphs, J. Graph Theory 7 (1983) 53–55. doi:10.1002/jgt.3190070107
[14] R.J. Faudree and J. Sheehan, Size Ramsey numbers involving stars, Discrete Math. 46 (1983) 151–157. doi:10.1016/0012-365X(83)90248-0
[15] F. Harary and Z. Miller, Generalized Ramsey theory VIII. The size Ramsey number of small graphs, Stud. Pure Math. (1983) 271–283. doi:10.1007/978-3-0348-5438-2_25
[16] R. Javadi, F. Khoeini, G. Omidi and A. Pokrovskiy, On the size-Ramsey number of cycles (2017). arXiv:1701.07348v1 [math.CO]
[17] S. Letzter, Path Ramsey number for random graphs, Combin. Probab. Comput. 25 (2016) 612–622. doi:10.1017/S0963548315000279
[18] R. Lortz and I. Mengersen, Size Ramsey results for paths versus stars, Australas. J. Combin. 18 (1998) 3–12.
[19] M. Miralaei, G.R. Omidi and M. Shahsiah, Size Ramsey numbers of stars versus cliques (2016). arXiv:1601.06599v1 [math.CO]
[20] S.P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. (2017) #DS1.
[21] D.R. Silaban, E.T. Baskoro and S. Uttunggadewa, On the restricted size Ramsey number, Procedia Computer Science 74 (2015) 21–26. doi:10.1016/j.procs.2015.12.069
[22] D.R. Silaban, E.T. Baskoro and S. Uttunggadewa, Restricted size Ramsey number for P 3 versus small paths, AIP Conf. Proc. 1707 (2016) 020020. doi:10.1063/1.4940821
[23] D.R. Silaban, E.T. Baskoro and S. Uttunggadewa, Restricted size Ramsey number for path of order three versus graph of order five, Electron. J. Graph Theory Appl. 5 (2017) 155–162. doi:10.5614/ejgta.2017.5.1.15