Facial [r,s,t]-Colorings of Plane Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 3, pp. 629-645

Voir la notice de l'article provenant de la source Library of Science

Let G be a plane graph. Two edges are facially adjacent in G if they are consecutive edges on the boundary walk of a face of G. Given nonnegative integers r, s, and t, a facial [r, s, t]-coloring of a plane graph G = (V,E) is a mapping f : V ∪ E →1, . . ., k such that |f(v_1) − f(v_2)| ≥ r for every two adjacent vertices v_1 and v_2, | f(e_1) − f(e_2)| ≥ s for every two facially adjacent edges e_1 and e_2, and | f(v) − f(e)| ≥ t for all pairs of incident vertices v and edges e. The facial [r, s, t]-chromatic number χ_r,s,t (G) of G is defined to be the minimum k such that G admits a facial [r, s, t]-coloring with colors 1, . . ., k. In this paper we show that χ_r,s,t (G) ≤ 3r + 3s + t + 1 for every plane graph G. For some triplets [r, s, t] and for some families of plane graphs this bound is improved. Special attention is devoted to the cases when the parameters r, s, and t are small.
Keywords: plane graph, boundary walk, edge-coloring, vertex-coloring, total-coloring
@article{DMGT_2019_39_3_a1,
     author = {Czap, J\'ulius and \v{S}ugerek, Peter and Jendrol{\textquoteright}, Stanislav and Valiska, Juraj},
     title = {Facial {[r,s,t]-Colorings} of {Plane} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {629--645},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a1/}
}
TY  - JOUR
AU  - Czap, Július
AU  - Šugerek, Peter
AU  - Jendrol’, Stanislav
AU  - Valiska, Juraj
TI  - Facial [r,s,t]-Colorings of Plane Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 629
EP  - 645
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a1/
LA  - en
ID  - DMGT_2019_39_3_a1
ER  - 
%0 Journal Article
%A Czap, Július
%A Šugerek, Peter
%A Jendrol’, Stanislav
%A Valiska, Juraj
%T Facial [r,s,t]-Colorings of Plane Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 629-645
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a1/
%G en
%F DMGT_2019_39_3_a1
Czap, Július; Šugerek, Peter; Jendrol’, Stanislav; Valiska, Juraj. Facial [r,s,t]-Colorings of Plane Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 3, pp. 629-645. http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a1/