Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_3_a1, author = {Czap, J\'ulius and \v{S}ugerek, Peter and Jendrol{\textquoteright}, Stanislav and Valiska, Juraj}, title = {Facial {[r,s,t]-Colorings} of {Plane} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {629--645}, publisher = {mathdoc}, volume = {39}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a1/} }
TY - JOUR AU - Czap, Július AU - Šugerek, Peter AU - Jendrol’, Stanislav AU - Valiska, Juraj TI - Facial [r,s,t]-Colorings of Plane Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 629 EP - 645 VL - 39 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a1/ LA - en ID - DMGT_2019_39_3_a1 ER -
%0 Journal Article %A Czap, Július %A Šugerek, Peter %A Jendrol’, Stanislav %A Valiska, Juraj %T Facial [r,s,t]-Colorings of Plane Graphs %J Discussiones Mathematicae. Graph Theory %D 2019 %P 629-645 %V 39 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a1/ %G en %F DMGT_2019_39_3_a1
Czap, Július; Šugerek, Peter; Jendrol’, Stanislav; Valiska, Juraj. Facial [r,s,t]-Colorings of Plane Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 3, pp. 629-645. http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a1/
[1] K. Appel and W. Haken, Every planar map is four colorable, Part I: Discharging, Illinois J. Math. 21 (1977) 429–490.
[2] K. Appel, W. Haken and J. Koch, Every planar map is four colorable, Part II: Reducibility, Illinois J. Math. 21 (1977) 491–567.
[3] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, New York, 2008).
[4] D. Chen and W. Wang, (2, 1) -total labelling of outerplanar graphs, Discrete Appl. Math. 155 (2007) 2585–2593. doi:10.1016/j.dam.2007.07.016
[5] J. Czap and S. Jendrol’, Facially-constrained colorings of plane graphs: A survey, Discrete Math. 340 (2017) 2691–2703. doi:10.1016/j.disc.2016.07.026
[6] J. Czap and P. Šugerek, Facial total-coloring of bipartite plane graphs, Int. J. Pure Appl. Math. 115 (2017) 115–121. doi:10.12732/ijpam.v115i1.9
[7] L. Dekar, B. Effantin and H. Kheddouci, [ r, s, t ] -colorings of graph products, Graphs Combin. 30 (2014) 1135–1147. doi:10.1007/s00373-013-1338-4
[8] L. Dekar, B. Effantin and H. Kheddouci, [ r, s, t ] -colorings of trees and bipartite graphs, Discrete Math. 310 (2010) 260–269. doi:10.1016/j.disc.2008.09.021
[9] I. Fabrici, S. Jendrol’ and M. Vrbjarová, Unique-maximum edge-colouring of plane graphs with respect to faces, Discrete Appl. Math. 185 (2015) 239–243. doi:10.1016/j.dam.2014.12.002
[10] I. Fabrici, S. Jendrol’ and M. Vrbjarová, Facial entire colourings of plane graphs, Discrete Math. 339 (2016) 626–631. doi:10.1016/j.disc.2015.09.011
[11] I. Fabrici, S. Jendrol’ and M. Voigt, Facial list colourings of plane graphs, Discrete Math. 339 (2016) 2826–2831. doi:10.1016/j.disc.2016.05.034
[12] H. Grötzsch, Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-Luther-Universit¨at, Halle-Wittenberg, Math.-Nat. Reihe 8 (1959) 109–120.
[13] T. Hasunuma, T. Ishii, H. Ono and Y. Uno, A tight upper bound on the (2, 1) -total labeling number of outerplanar graphs, J. Discrete Algorithms 14 (2012) 189–206. doi:10.1016/j.jda.2011.12.020
[14] F. Havet and S. Thomassé, Complexity of ( p, 1) -total labelling, Discrete Appl. Math. 157 (2009) 2859–2870. doi:10.1016/j.dam.2009.03.021
[15] F. Havet and M.-L. Yu, ( p, 1) -total labelling of graphs, Discrete Math. 308 (2008) 496–513. doi:10.1016/j.disc.2007.03.034
[16] A. Kemnitz and J. Lehmann, [ r, s, t ] -colorings of stars, Congr. Numer. 185 (2007) 65–80.
[17] A. Kemnitz, J. Lehmann and M. Marangio, [1, 1, 2] -colorings of complete graphs, Congr. Numer. 208 (2011) 99–113.
[18] A. Kemnitz and M. Marangio, [ r, s, t ] -colorings of graphs, Discrete Math. 307 (2007) 199–207. doi:10.1016/j.disc.2006.06.030
[19] A. Kemnitz, M. Marangio and P. Mihók, [ r, s, t ] -chromatic numbers and hereditary properties of graphs, Discrete Math. 307 (2007) 916–922. doi:10.1016/j.disc.2005.11.055
[20] A. Kemnitz, M. Marangio and Zs. Tuza, [1, 1, t ] -colorings of complete graphs, Graphs Combin. 29 (2013) 1041–1050. doi:10.1007/s00373-012-1153-3
[21] W. Liao and M. Li, [ r, s, t ] -colorings of friendship graphs and wheels, Graphs Combin. 31 (2015) 2275–2292. doi:10.1007/s00373-014-1502-5
[22] I. Schiermeyer and M.S. Villà, [ r, s, t ] -colourings of paths, Opuscula Math. 27 (2007) 131–149.
[23] G. Sethuraman and A. Velankanni, (2, 1) -total labeling of a class of subcubic graphs, Electron. Notes Discrete Math. 48 (2015) 259–266. doi:10.1016/j.endm.2015.05.039
[24] P.G. Tait, Remarks on the colouring of maps, Proc. Roy. Soc. Edinburgh 10 (1880) 729.
[25] M.S. Villà, [ r, s, t ]-Colourings of Paths, Cycles and Stars, Doctoral Thesis (TU Bergakademie, Freiberg, 2005).
[26] W. Wang and D. Chen, (2, 1) -total number of trees with maximum degree three, Inform. Process. Lett. 109 (2009) 805–810. doi:10.1016/j.ipl.2009.03.027