On Accurate Domination in Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 3, pp. 615-627

Voir la notice de l'article provenant de la source Library of Science

A dominating set of a graph G is a subset D ⊆ VG such that every vertex not in D is adjacent to at least one vertex in D. The cardinality of a smallest dominating set of G, denoted by γ(G), is the domination number of G. The accurate domination number of G, denoted by γa(G), is the cardinality of a smallest set D that is a dominating set of G and no |D|-element subset of VG D is a dominating set of G. We study graphs for which the accurate domination number is equal to the domination number. In particular, all trees G for which γa(G) = γ(G) are characterized. Furthermore, we compare the accurate domination number with the domination number of different coronas of a graph.
Keywords: domination number, accurate domination number, tree, corona
@article{DMGT_2019_39_3_a0,
     author = {Cyman, Joanna and Henning, Michael A. and Topp, Jerzy},
     title = {On {Accurate} {Domination} in {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {615--627},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a0/}
}
TY  - JOUR
AU  - Cyman, Joanna
AU  - Henning, Michael A.
AU  - Topp, Jerzy
TI  - On Accurate Domination in Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 615
EP  - 627
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a0/
LA  - en
ID  - DMGT_2019_39_3_a0
ER  - 
%0 Journal Article
%A Cyman, Joanna
%A Henning, Michael A.
%A Topp, Jerzy
%T On Accurate Domination in Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 615-627
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a0/
%G en
%F DMGT_2019_39_3_a0
Cyman, Joanna; Henning, Michael A.; Topp, Jerzy. On Accurate Domination in Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 3, pp. 615-627. http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a0/