Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_3_a0, author = {Cyman, Joanna and Henning, Michael A. and Topp, Jerzy}, title = {On {Accurate} {Domination} in {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {615--627}, publisher = {mathdoc}, volume = {39}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a0/} }
TY - JOUR AU - Cyman, Joanna AU - Henning, Michael A. AU - Topp, Jerzy TI - On Accurate Domination in Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 615 EP - 627 VL - 39 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a0/ LA - en ID - DMGT_2019_39_3_a0 ER -
Cyman, Joanna; Henning, Michael A.; Topp, Jerzy. On Accurate Domination in Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 3, pp. 615-627. http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a0/
[1] G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs (CRC Press, Boca Raton, 2016).
[2] M. Dettlaff, M. Lemańska, J. Topp and P. Żyliński, Coronas and domination subdivision number of a graph, Bull. Malays. Math. Sci. Soc. 41 (2018) 1717–1724. doi:10.1007/s40840-016-0417-0
[3] K. Dhanalakshmi and B. Maheswari, Accurate and total accurate dominating sets of interval graphs, Int. J. Comput. Eng. Tech. 5 (2014) 85–93.
[4] M. Fischermann, Block graphs with unique minimum dominating sets, Discrete Math. 240 (2001) 247–251. doi:10.1016/S0012-365X(01)00196-0
[5] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970) 322–324. doi:10.1007/BF01844162
[6] V.M. Goudar, S.H. Venkatesh, Venkatesha and K.M. Tejaswini, Accurate connected edge domination number in graphs, J. Ultra Sci. Phys. Sci. Ser. A 29 (2017) 290–301. doi:10.22147/jusps-A/290708
[7] V.M. Goudar, S.H. Venkatesh, Venkatesha and K.M. Tejaswini, Total accurate edge domination number in graphs, Int. J. Math. Sci. Eng. Appl. 11 (2017) 9–18.
[8] G. Gunther, B. Hartnell, L.R. Markus and D. Rall, Graphs with unique minimum dominating sets, Congr. Numer. 101 (1994) 55–63.
[9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker Inc., New York, 1998).
[10] I. Kelkar and B. Maheswari, Accurate domination number of butterfly graphs, Chamchuri J. Math. 1 (2009) 35–43.
[11] V.R. Kulli and M.B. Kattimani, The accurate domination number of a graph, Technical Report 2000:01, (Dept. Math., Gulbarga University, Gulbarga, 2000).
[12] V.R. Kulli and M.B. Kattimani, Accurate domination in graphs, in: Advances in Domination Theory I, V.R. Kulli (Ed.), (Vishwa International Publications, 2012) 1–8.
[13] V.R. Kulli and M.B. Kattimani, Global accurate domination in graphs, Int. J. Sci. Res. Pub. 3 (2013) 1–3.
[14] V.R. Kulli and M.B. Kattimani, Connected accurate domination in graphs, J. Comput. Math. Sci. 6 (2015) 682–687.
[15] C.M. Mynhardt, Vertices contained in every minimum dominating set of a tree, J. Graph Theory 31 (1999) 163–177. doi:10.1002/(SICI)1097-0118(199907)31:3h163::AID-JGT2i3.0.CO;2-T
[16] S.H. Venkatesh, V.M. Goudar and Venkatesha, Operations on accurate edge domination number in graphs, Glob. J. Pure Appl. Math. 13 (2017) 5611–5623.
[17] S.H. Venkatesh, V.R. Kulli, V.M. Goudar and Venkatesha, Results on accurate edge domination number in graphs, J. Ultra Sci. Phys. Sci. Ser. A 29 (2017) 21–29. doi:10.22147/jusps-A/290104