Minimum Edge Cuts in Diameter 2 Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 605-608
Cet article a éte moissonné depuis la source Library of Science
Plesnik proved that the edge connectivity and minimum degree are equal for diameter 2 graphs. We provide a streamlined proof of this fact and characterize the diameter 2 graphs with a nontrivial minimum edge cut.
Keywords:
edge connectivity, diameter
@article{DMGT_2019_39_2_a21,
author = {Bickle, Allan and Schwenk, Allen},
title = {Minimum {Edge} {Cuts} in {Diameter} 2 {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {605--608},
year = {2019},
volume = {39},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a21/}
}
Bickle, Allan; Schwenk, Allen. Minimum Edge Cuts in Diameter 2 Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 605-608. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a21/
[1] G. Chartrand and L. Lesniak, Graphs and Digraphs, 4th Ed. (CRC Press, 2005).
[2] P. Erdős and R.J. Wilson, On the chromatic index of almost all graphs, J. Combin. Theory Ser. B 23 (1977) 255–257. doi:10.1016/0095-8956(77)90039-9
[3] J. Plesnik, Critical graphs of a given diameter, Acta Fac. Rerum Natur. Univ. Comenian. Math. 30 (1975) 71–93.