Minimum Edge Cuts in Diameter 2 Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 605-608.

Voir la notice de l'article provenant de la source Library of Science

Plesnik proved that the edge connectivity and minimum degree are equal for diameter 2 graphs. We provide a streamlined proof of this fact and characterize the diameter 2 graphs with a nontrivial minimum edge cut.
Keywords: edge connectivity, diameter
@article{DMGT_2019_39_2_a21,
     author = {Bickle, Allan and Schwenk, Allen},
     title = {Minimum {Edge} {Cuts} in {Diameter} 2 {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {605--608},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a21/}
}
TY  - JOUR
AU  - Bickle, Allan
AU  - Schwenk, Allen
TI  - Minimum Edge Cuts in Diameter 2 Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 605
EP  - 608
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a21/
LA  - en
ID  - DMGT_2019_39_2_a21
ER  - 
%0 Journal Article
%A Bickle, Allan
%A Schwenk, Allen
%T Minimum Edge Cuts in Diameter 2 Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 605-608
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a21/
%G en
%F DMGT_2019_39_2_a21
Bickle, Allan; Schwenk, Allen. Minimum Edge Cuts in Diameter 2 Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 605-608. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a21/

[1] G. Chartrand and L. Lesniak, Graphs and Digraphs, 4th Ed. (CRC Press, 2005).

[2] P. Erdős and R.J. Wilson, On the chromatic index of almost all graphs, J. Combin. Theory Ser. B 23 (1977) 255–257. doi:10.1016/0095-8956(77)90039-9

[3] J. Plesnik, Critical graphs of a given diameter, Acta Fac. Rerum Natur. Univ. Comenian. Math. 30 (1975) 71–93.