Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_2_a20, author = {Benmedjdoub, Brahim and Bouchemakh, Isma and Sopena, \'Eric}, title = {2-Distance {Colorings} of {Integer} {Distance} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {589--603}, publisher = {mathdoc}, volume = {39}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a20/} }
TY - JOUR AU - Benmedjdoub, Brahim AU - Bouchemakh, Isma AU - Sopena, Éric TI - 2-Distance Colorings of Integer Distance Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 589 EP - 603 VL - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a20/ LA - en ID - DMGT_2019_39_2_a20 ER -
Benmedjdoub, Brahim; Bouchemakh, Isma; Sopena, Éric. 2-Distance Colorings of Integer Distance Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 589-603. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a20/
[1] G. Agnarsson and M.M. Halldórsson, Coloring powers of planar graphs, SIAM J. Discrete Math. 16 (2003) 651–662. doi:10.1137/S0895480100367950
[2] M. Bonamy, B. Lévêque and A. Pinlou, 2 -distance coloring of sparse graphs, J. Graph Theory 77 (2014) 190–218. doi:10.1002/jgt.21782
[3] M. Bonamy, B. Lévêque and A. Pinlou, Graphs with maximum degree ∆ ≥ 17 and maximum average degree less than 3 are list 2 -distance (∆ + 2) -colorable, Discrete Math. 317 (2014) 19–32. doi:10.1016/j.disc.2013.10.022
[4] O.V. Borodin and A.O. Ivanova, 2 -distance (∆ + 2) -coloring of planar graphs with girth six and ∆ ≥ 18, Discrete Math. 309 (2009) 6496–6502. doi:10.1016/j.disc.2009.06.029
[5] T. Calamoneri, The L ( h, k ) -labelling problem: An updated survey and annotated bibliography, Comput. J. 54 (2011) 1344-1371. doi:10.1093/comjnl/bxr037
[6] Z. Dvořák, D. Král, P. Nejedlý and R. Škrekovski, Coloring squares of planar graphs with girth six, European J. Combin. 29 (2008) 838–849. doi:10.1016/j.ejc.2007.11.005
[7] A. Kemnitz and H. Kolberg, Coloring of integer distance graphs, Discrete Math. 191 (1998) 113–123. doi:10.1016/S0012-365X(98)00099-5
[8] F. Kramer and H. Kramer, Un probleme de coloration des sommets d’un graphe, C. R. Acad. Sci. Paris A 268 (1969) 46–48.
[9] F. Kramer and H. Kramer, A survey on the distance-colouring of graphs, Discrete Math. 308 (2008) 422–426. doi:10.1016/j.disc.2006.11.059
[10] K.-W. Lih and W.-F. Wang, Coloring the square of an outerplanar graph, Taiwanese J. Math. 10 (2006) 1015–1023. doi:10.11650/twjm/1500403890
[11] D.D.-F. Liu, From rainbow to the lonely runner: A survey on coloring parameters of distance graphs, Taiwanese J. Math. 12 (2008) 851–871. doi:10.11650/twjm/1500404981
[12] M. Voigt, Über die chromatische Zahl einer speziellen Klasse unendlicher Graphen, Ph.D. Thesis (Techn. Univ. Ilmenau, 1992).
[13] H. Walther, Über eine spezielle Klasse unendlicher Graphen, in: Graphentheorie, K. Wagner and R. Bodendiek (Ed(s)), (Bibl. Inst., Mannheim, 1990) 2, 268–295.
[14] W.-F. Wang and K.-W. Lih, Labeling planar graphs with conditions on girth and distance two, SIAM J. Discrete Math. 17 (2003) 264-275. doi:10.1137/S0895480101390448
[15] G. Wegner, Graphs with given diameter and a coloring problem (Technical Report, University of Dortmund, 1977). doi:10.17877/DE290R-16496
[16] X. Zhu, Circular chromatic number of distance graphs with distance sets of cardinality 3, J. Graph Theory 41 (2002) 195–207. doi:10.1002/jgt.10062