Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_2_a18, author = {Volkmann, Lutz}, title = {Sufficient {Conditions} for {Maximally} {Edge-Connected} and {Super-Edge-Connected} {Graphs} {Depending} on {The} {Clique} {Number}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {567--573}, publisher = {mathdoc}, volume = {39}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a18/} }
TY - JOUR AU - Volkmann, Lutz TI - Sufficient Conditions for Maximally Edge-Connected and Super-Edge-Connected Graphs Depending on The Clique Number JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 567 EP - 573 VL - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a18/ LA - en ID - DMGT_2019_39_2_a18 ER -
%0 Journal Article %A Volkmann, Lutz %T Sufficient Conditions for Maximally Edge-Connected and Super-Edge-Connected Graphs Depending on The Clique Number %J Discussiones Mathematicae. Graph Theory %D 2019 %P 567-573 %V 39 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a18/ %G en %F DMGT_2019_39_2_a18
Volkmann, Lutz. Sufficient Conditions for Maximally Edge-Connected and Super-Edge-Connected Graphs Depending on The Clique Number. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 567-573. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a18/
[1] D. Bauer, C. Suffel, F. Boesch and R. Tindell, Connectivity extremal problems and the design of reliable probabilistic networks, in: The Theory and Applications of Graphs, Kalamazoo MI (Wiley, New York, 1981) 45–54.
[2] G. Chartrand, A graph-theoretic approach to a communications problem, SIAM J. Appl. Math. 14 (1966) 778–781. doi:10.1137/0114065
[3] A. Hellwig and L. Volkmann, Maximally edge-connected and vertex-connected graphs and digraphs: A survey, Discrete Math. 308 (2008) 3265–3296. doi:10.1016/j.disc.2007.06.035
[4] A.K. Kelmans Asymptotic formulas for the probability of k-connectedness of random graphs, Theory Probab. Appl. 17 (1972) 243–254. doi:10.1137/1117029
[5] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436–452, in Hungarian.
[6] L. Volkmann and Z.-M. Hong, Sufficient conditions for maximally edge-connected and super-edge-connected graphs, Commun. Comb. Optim. 2 (2017) 35–41.