Sufficient Conditions for Maximally Edge-Connected and Super-Edge-Connected Graphs Depending on The Clique Number
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 567-573.

Voir la notice de l'article provenant de la source Library of Science

Let G be a connected graph with minimum degree δ and edge-connectivity λ. A graph is maximally edge-connected if λ = δ, and it is super-edgeconnected if every minimum edge-cut is trivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree. The clique number ω(G) of a graph G is the maximum cardinality of a complete subgraph of G. In this paper, we show that a connected graph G with clique number ω(G) ≤ r is maximally edge-connected or super-edge-connected if the number of edges is large enough. These are generalizations of corresponding results for triangle-free graphs by Volkmann and Hong in 2017.
Keywords: edge-connectivity, clique number, maximally edge-connected graphs, super-edge-connected graphs
@article{DMGT_2019_39_2_a18,
     author = {Volkmann, Lutz},
     title = {Sufficient {Conditions} for {Maximally} {Edge-Connected} and {Super-Edge-Connected} {Graphs} {Depending} on {The} {Clique} {Number}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {567--573},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a18/}
}
TY  - JOUR
AU  - Volkmann, Lutz
TI  - Sufficient Conditions for Maximally Edge-Connected and Super-Edge-Connected Graphs Depending on The Clique Number
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 567
EP  - 573
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a18/
LA  - en
ID  - DMGT_2019_39_2_a18
ER  - 
%0 Journal Article
%A Volkmann, Lutz
%T Sufficient Conditions for Maximally Edge-Connected and Super-Edge-Connected Graphs Depending on The Clique Number
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 567-573
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a18/
%G en
%F DMGT_2019_39_2_a18
Volkmann, Lutz. Sufficient Conditions for Maximally Edge-Connected and Super-Edge-Connected Graphs Depending on The Clique Number. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 567-573. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a18/

[1] D. Bauer, C. Suffel, F. Boesch and R. Tindell, Connectivity extremal problems and the design of reliable probabilistic networks, in: The Theory and Applications of Graphs, Kalamazoo MI (Wiley, New York, 1981) 45–54.

[2] G. Chartrand, A graph-theoretic approach to a communications problem, SIAM J. Appl. Math. 14 (1966) 778–781. doi:10.1137/0114065

[3] A. Hellwig and L. Volkmann, Maximally edge-connected and vertex-connected graphs and digraphs: A survey, Discrete Math. 308 (2008) 3265–3296. doi:10.1016/j.disc.2007.06.035

[4] A.K. Kelmans Asymptotic formulas for the probability of k-connectedness of random graphs, Theory Probab. Appl. 17 (1972) 243–254. doi:10.1137/1117029

[5] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436–452, in Hungarian.

[6] L. Volkmann and Z.-M. Hong, Sufficient conditions for maximally edge-connected and super-edge-connected graphs, Commun. Comb. Optim. 2 (2017) 35–41.