Orientable $ \mathbb{Z}_N $-Distance Magic Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 533-546
Voir la notice de l'article provenant de la source Library of Science
Let G = (V, E) be a graph of order n. A distance magic labeling of G is a bijection 𝓁: V →1, 2, . . ., n for which there exists a positive integer k such that Σ_ x ∈ N(v) 𝓁 (x) = k for all v ∈ V, where N(v) is the open neighborhood of v.
Tuttes flow conjectures are a major source of inspiration in graph theory. In this paper we ask when we can assign n distinct labels from the set 1, 2, . . ., n to the vertices of a graph G of order n such that the sum of the labels on heads minus the sum of the labels on tails is constant modulo n for each vertex of G. Therefore we generalize the notion of distance magic labeling for oriented graphs.
Keywords:
distance magic graph, digraph, flow graph
@article{DMGT_2019_39_2_a15,
author = {Cichacz, Sylwia and Freyberg, Bryan and Froncek, Dalibor},
title = {Orientable $ \mathbb{Z}_N ${-Distance} {Magic} {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {533--546},
publisher = {mathdoc},
volume = {39},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a15/}
}
TY - JOUR
AU - Cichacz, Sylwia
AU - Freyberg, Bryan
AU - Froncek, Dalibor
TI - Orientable $ \mathbb{Z}_N $-Distance Magic Graphs
JO - Discussiones Mathematicae. Graph Theory
PY - 2019
SP - 533
EP - 546
VL - 39
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a15/
LA - en
ID - DMGT_2019_39_2_a15
ER -
Cichacz, Sylwia; Freyberg, Bryan; Froncek, Dalibor. Orientable $ \mathbb{Z}_N $-Distance Magic Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 533-546. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a15/