Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_2_a15, author = {Cichacz, Sylwia and Freyberg, Bryan and Froncek, Dalibor}, title = {Orientable $ \mathbb{Z}_N ${-Distance} {Magic} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {533--546}, publisher = {mathdoc}, volume = {39}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a15/} }
TY - JOUR AU - Cichacz, Sylwia AU - Freyberg, Bryan AU - Froncek, Dalibor TI - Orientable $ \mathbb{Z}_N $-Distance Magic Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 533 EP - 546 VL - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a15/ LA - en ID - DMGT_2019_39_2_a15 ER -
Cichacz, Sylwia; Freyberg, Bryan; Froncek, Dalibor. Orientable $ \mathbb{Z}_N $-Distance Magic Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 533-546. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a15/
[1] S. Arumugam, D. Froncek and N. Kamatchi, Distance Magic Graphs—A Survey, J. Indones. Math. Soc., Special Edition (2011) 11–26. doi:10.22342/jims.0.0.15.11-26
[2] G.S. Bloom and D.F. Hsu, On graceful digraphs and a problem in network addressing, Congr. Numer. 35 (1982) 91–103.
[3] G.S. Bloom, A. Marr and W.D. Wallis, Magic digraphs, J. Combin. Math. Combin. Comput. 65 (2008) 205–212.
[4] S. Cichacz, Note on group distance magic graphs G [C4], Graphs Combin. 30 (2014) 565–571. doi:10.1007/s00373-013-1294-z
[5] S. Cichacz, Distance magic graphs G × Cn, Discrete Appl. Math. 177 (2014) 80–87. doi:10.1016/j.dam.2014.05.044
[6] S. Cichacz and D. Froncek, Distance magic circulant graphs, Discrete Math. 339 (2016) 84–94. doi:10.1016/j.disc.2015.07.002
[7] B. Freyberg and M. Keranen, Orientable ℤn-distance magic graphs via products, Australas. J. Combin. 70 (2018) 319–328.
[8] B. Freyberg and M. Keranen, Orientable ℤn-distance magic labeling of the Cartesian product of two cycles, Australas. J. Combin. 69 (2017) 222–235.
[9] D. Froncek, Group distance magic labeling of of Cartesian product of cycles, Australas. J. Combin. 55 (2013) 167–174.
[10] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. #DS6.
[11] N. Hartsfield and G. Ringel, Pearls in Graph Theory, (Academic Press, Boston 1990, Revised version 1994) 108–109.
[12] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second Edition (CRC Press, Boca Raton, FL, 2011).
[13] M.I. Jinnah, On Σ -labelled graphs, in: Technical Proceedings of Group Discussion on Graph Labeling Problems, B.D. Acharya and S.M. Hedge (Ed(s)) (1999) 71–77.
[14] G. Kaplan, A. Lev and Y. Roditty, On zero-sum partitions and anti-magic trees, Discrete Math. 309 (2009) 2010–2014. doi:10.1016/j.disc.2008.04.012
[15] M. Miller, C. Rodger and R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Combin. 28 (2003) 305–315.
[16] S.B. Rao, Sigma graphs—a survey, in: Labelings of Discrete Structures and Applications, B.D. Acharya, S. Arumugam and A. Rosa (Ed(s)), (Narosa Publishing House, New Delhi, 2008) 135–140.
[17] V. Vilfred, Σ-Labelled Graphs and Circulant Graphs, Ph.D. Thesis (University of Kerala, Trivandrum, India, 1994).