Orientable $ \mathbb{Z}_N $-Distance Magic Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 533-546

Voir la notice de l'article provenant de la source Library of Science

Let G = (V, E) be a graph of order n. A distance magic labeling of G is a bijection 𝓁: V →1, 2, . . ., n for which there exists a positive integer k such that Σ_ x ∈ N(v) 𝓁 (x) = k for all v ∈ V, where N(v) is the open neighborhood of v. Tuttes flow conjectures are a major source of inspiration in graph theory. In this paper we ask when we can assign n distinct labels from the set 1, 2, . . ., n to the vertices of a graph G of order n such that the sum of the labels on heads minus the sum of the labels on tails is constant modulo n for each vertex of G. Therefore we generalize the notion of distance magic labeling for oriented graphs.
Keywords: distance magic graph, digraph, flow graph
@article{DMGT_2019_39_2_a15,
     author = {Cichacz, Sylwia and Freyberg, Bryan and Froncek, Dalibor},
     title = {Orientable $ \mathbb{Z}_N ${-Distance} {Magic} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {533--546},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a15/}
}
TY  - JOUR
AU  - Cichacz, Sylwia
AU  - Freyberg, Bryan
AU  - Froncek, Dalibor
TI  - Orientable $ \mathbb{Z}_N $-Distance Magic Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 533
EP  - 546
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a15/
LA  - en
ID  - DMGT_2019_39_2_a15
ER  - 
%0 Journal Article
%A Cichacz, Sylwia
%A Freyberg, Bryan
%A Froncek, Dalibor
%T Orientable $ \mathbb{Z}_N $-Distance Magic Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 533-546
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a15/
%G en
%F DMGT_2019_39_2_a15
Cichacz, Sylwia; Freyberg, Bryan; Froncek, Dalibor. Orientable $ \mathbb{Z}_N $-Distance Magic Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 533-546. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a15/