On Edge Colorings of 1-Planar Graphs without 5-Cycles with Two Chords
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 301-312
Voir la notice de l'article provenant de la source Library of Science
A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, it is proved that every 1-planar graph with maximum degree ∆ ≥ 8 is edge-colorable with ∆ colors if each of its 5-cycles contains at most one chord.
Keywords:
1-planar graphs, edge coloring, discharging method
@article{DMGT_2019_39_2_a0,
author = {Sun, Lin and Wu, Jianliang},
title = {On {Edge} {Colorings} of {1-Planar} {Graphs} without {5-Cycles} with {Two} {Chords}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {301--312},
publisher = {mathdoc},
volume = {39},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a0/}
}
TY - JOUR AU - Sun, Lin AU - Wu, Jianliang TI - On Edge Colorings of 1-Planar Graphs without 5-Cycles with Two Chords JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 301 EP - 312 VL - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a0/ LA - en ID - DMGT_2019_39_2_a0 ER -
Sun, Lin; Wu, Jianliang. On Edge Colorings of 1-Planar Graphs without 5-Cycles with Two Chords. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 301-312. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a0/