Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_1_a20, author = {West, Douglas B. and Wise, Jennifer I.}, title = {Antipodal {Edge-Colorings} of {Hypercubes}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {271--284}, publisher = {mathdoc}, volume = {39}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a20/} }
West, Douglas B.; Wise, Jennifer I. Antipodal Edge-Colorings of Hypercubes. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 271-284. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a20/
[1] M. DeVos and S. Norine, Edge-antipodal colorings of cubes, The Open Problem Garden. http://garden.irmacs.sfu.ca/?q=op/edge antipodal colorings of cubes
[2] T. Feder and C. Subi, On hypercube labellings and antipodal monochromatic paths, Discrete Appl. Math. 161 (2013) 1421-1426. doi: 10.1016/j.dam.2012.12.025
[3] K. Gandhi, Maximal monochromatic geodesics in an antipodal coloring of hypercube (2015), manuscript. http://math.mit.edu/research/highschool/primes/materials/2014/Gandhi.pdf
[4] I. Leader and E. Long, Long geodesics in subgraphs of the cube, Discrete Math. 326 (2014) 29-33. doi: 10.1016/j.disc.2014.02.013.