Antipodal Edge-Colorings of Hypercubes
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 271-284
Cet article a éte moissonné depuis la source Library of Science
Two vertices of the k-dimensional hypercube Qk are antipodal if they differ in every coordinate. Edges uv and xy are antipodal if u is antipodal to x and v is antipodal to y. An antipodal edge-coloring of Qk is a 2- edge-coloring such that antipodal edges always have different colors. Norine conjectured that for k ≥ 2, in every antipodal edge-coloring of Qk some two antipodal vertices are connected by a monochromatic path. Feder and Subi proved this for k ≤ 5. We prove it for k ≤ 6.
Keywords:
antipodal edge-coloring, hypercube, monochromatic geodesic
@article{DMGT_2019_39_1_a20,
author = {West, Douglas B. and Wise, Jennifer I.},
title = {Antipodal {Edge-Colorings} of {Hypercubes}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {271--284},
year = {2019},
volume = {39},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a20/}
}
West, Douglas B.; Wise, Jennifer I. Antipodal Edge-Colorings of Hypercubes. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 271-284. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a20/
[1] M. DeVos and S. Norine, Edge-antipodal colorings of cubes, The Open Problem Garden. http://garden.irmacs.sfu.ca/?q=op/edge antipodal colorings of cubes
[2] T. Feder and C. Subi, On hypercube labellings and antipodal monochromatic paths, Discrete Appl. Math. 161 (2013) 1421-1426. doi: 10.1016/j.dam.2012.12.025
[3] K. Gandhi, Maximal monochromatic geodesics in an antipodal coloring of hypercube (2015), manuscript. http://math.mit.edu/research/highschool/primes/materials/2014/Gandhi.pdf
[4] I. Leader and E. Long, Long geodesics in subgraphs of the cube, Discrete Math. 326 (2014) 29-33. doi: 10.1016/j.disc.2014.02.013.