Antipodal Edge-Colorings of Hypercubes
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 271-284.

Voir la notice de l'article provenant de la source Library of Science

Two vertices of the k-dimensional hypercube Qk are antipodal if they differ in every coordinate. Edges uv and xy are antipodal if u is antipodal to x and v is antipodal to y. An antipodal edge-coloring of Qk is a 2- edge-coloring such that antipodal edges always have different colors. Norine conjectured that for k ≥ 2, in every antipodal edge-coloring of Qk some two antipodal vertices are connected by a monochromatic path. Feder and Subi proved this for k ≤ 5. We prove it for k ≤ 6.
Keywords: antipodal edge-coloring, hypercube, monochromatic geodesic
@article{DMGT_2019_39_1_a20,
     author = {West, Douglas B. and Wise, Jennifer I.},
     title = {Antipodal {Edge-Colorings} of {Hypercubes}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {271--284},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a20/}
}
TY  - JOUR
AU  - West, Douglas B.
AU  - Wise, Jennifer I.
TI  - Antipodal Edge-Colorings of Hypercubes
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 271
EP  - 284
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a20/
LA  - en
ID  - DMGT_2019_39_1_a20
ER  - 
%0 Journal Article
%A West, Douglas B.
%A Wise, Jennifer I.
%T Antipodal Edge-Colorings of Hypercubes
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 271-284
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a20/
%G en
%F DMGT_2019_39_1_a20
West, Douglas B.; Wise, Jennifer I. Antipodal Edge-Colorings of Hypercubes. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 271-284. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a20/

[1] M. DeVos and S. Norine, Edge-antipodal colorings of cubes, The Open Problem Garden. http://garden.irmacs.sfu.ca/?q=op/edge antipodal colorings of cubes

[2] T. Feder and C. Subi, On hypercube labellings and antipodal monochromatic paths, Discrete Appl. Math. 161 (2013) 1421-1426. doi: 10.1016/j.dam.2012.12.025

[3] K. Gandhi, Maximal monochromatic geodesics in an antipodal coloring of hypercube (2015), manuscript. http://math.mit.edu/research/highschool/primes/materials/2014/Gandhi.pdf

[4] I. Leader and E. Long, Long geodesics in subgraphs of the cube, Discrete Math. 326 (2014) 29-33. doi: 10.1016/j.disc.2014.02.013.