The Bipartite-Splittance of a Bipartite Graph
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 23-29.

Voir la notice de l'article provenant de la source Library of Science

A bipartite-split graph is a bipartite graph whose vertex set can be partitioned into a complete bipartite set and an independent set. The bipartite- splittance of an arbitrary bipartite graph is the minimum number of edges to be added or removed in order to produce a bipartite-split graph. In this paper, we show that the bipartite-splittance of a bipartite graph depends only on the degree sequence pair of the bipartite graph, and an easily computable formula for it is derived. As a corollary, a simple characterization of the degree sequence pair of bipartite-split graphs is also given.
Keywords: degree sequence pair, bipartite-split graph, bipartite-splittance
@article{DMGT_2019_39_1_a2,
     author = {Yin, Jian-Hua and Guan, Jing-Xin},
     title = {The {Bipartite-Splittance} of a {Bipartite} {Graph}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {23--29},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a2/}
}
TY  - JOUR
AU  - Yin, Jian-Hua
AU  - Guan, Jing-Xin
TI  - The Bipartite-Splittance of a Bipartite Graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 23
EP  - 29
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a2/
LA  - en
ID  - DMGT_2019_39_1_a2
ER  - 
%0 Journal Article
%A Yin, Jian-Hua
%A Guan, Jing-Xin
%T The Bipartite-Splittance of a Bipartite Graph
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 23-29
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a2/
%G en
%F DMGT_2019_39_1_a2
Yin, Jian-Hua; Guan, Jing-Xin. The Bipartite-Splittance of a Bipartite Graph. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 23-29. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a2/

[1] S. Földes and P.L. Hammer, Split graphs, in: Proc. 8th Sout-Eastern Conf. on Combinatorics, Graph Theory and Computing, F. Hoffman et al. (Ed(s)), (Baton Rouge, Lousiana State University, 1977) 311-315.

[2] D. Gale, A theorem on flows in networks, Pac. J. Math. 7 (1957) 1073-1082. doi: 10.2140/pjm.1957.7.1073

[3] P.L. Hammer and B. Simeone, The splittance of a graph, Combinatorica 1 (1981) 275-284. doi: 10.1007/BF02579333

[4] H.J. Ryser, Combinatorial properties of matrices of zeros and ones, Canad. J. Math. 9 (1957) 371-377. doi: 10.4153/CJM-1957-044-3.