The Bipartite-Splittance of a Bipartite Graph
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 23-29
Cet article a éte moissonné depuis la source Library of Science
A bipartite-split graph is a bipartite graph whose vertex set can be partitioned into a complete bipartite set and an independent set. The bipartite- splittance of an arbitrary bipartite graph is the minimum number of edges to be added or removed in order to produce a bipartite-split graph. In this paper, we show that the bipartite-splittance of a bipartite graph depends only on the degree sequence pair of the bipartite graph, and an easily computable formula for it is derived. As a corollary, a simple characterization of the degree sequence pair of bipartite-split graphs is also given.
Keywords:
degree sequence pair, bipartite-split graph, bipartite-splittance
@article{DMGT_2019_39_1_a2,
author = {Yin, Jian-Hua and Guan, Jing-Xin},
title = {The {Bipartite-Splittance} of a {Bipartite} {Graph}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {23--29},
year = {2019},
volume = {39},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a2/}
}
Yin, Jian-Hua; Guan, Jing-Xin. The Bipartite-Splittance of a Bipartite Graph. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 23-29. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a2/
[1] S. Földes and P.L. Hammer, Split graphs, in: Proc. 8th Sout-Eastern Conf. on Combinatorics, Graph Theory and Computing, F. Hoffman et al. (Ed(s)), (Baton Rouge, Lousiana State University, 1977) 311-315.
[2] D. Gale, A theorem on flows in networks, Pac. J. Math. 7 (1957) 1073-1082. doi: 10.2140/pjm.1957.7.1073
[3] P.L. Hammer and B. Simeone, The splittance of a graph, Combinatorica 1 (1981) 275-284. doi: 10.1007/BF02579333
[4] H.J. Ryser, Combinatorial properties of matrices of zeros and ones, Canad. J. Math. 9 (1957) 371-377. doi: 10.4153/CJM-1957-044-3.