L(2, 1)-Labeling of Circulant Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 143-155.

Voir la notice de l'article provenant de la source Library of Science

An L(2, 1)-labeling of a graph Γ is an assignment of non-negative integers to the vertices such that adjacent vertices receive labels that differ by at least 2, and those at a distance of two receive labels that differ by at least one. Let λ_2^1 (Γ) denote the least λ such that Γ admits an L(2, 1)-labeling using labels from { 0, 1, . . ., λ}. A Cayley graph of group G is called a circulant graph of order n, if G = ℤ_n. In this paper initially we investigate the upper bound for the span of the L(2, 1)-labeling for Cayley graphs on cyclic groups with “large” connection sets. Then we extend our observation and find the span of L(2, 1)-labeling for any circulants of order n.
Keywords: graph coloring, L(2, 1)-labeling, circulants
@article{DMGT_2019_39_1_a11,
     author = {Mitra, Sarbari and Bhoumik, Soumya},
     title = {L(2, {1)-Labeling} of {Circulant} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {143--155},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a11/}
}
TY  - JOUR
AU  - Mitra, Sarbari
AU  - Bhoumik, Soumya
TI  - L(2, 1)-Labeling of Circulant Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 143
EP  - 155
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a11/
LA  - en
ID  - DMGT_2019_39_1_a11
ER  - 
%0 Journal Article
%A Mitra, Sarbari
%A Bhoumik, Soumya
%T L(2, 1)-Labeling of Circulant Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 143-155
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a11/
%G en
%F DMGT_2019_39_1_a11
Mitra, Sarbari; Bhoumik, Soumya. L(2, 1)-Labeling of Circulant Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 143-155. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a11/

[1] T. Araki, Labeling bipartite permutation graphs with a condition at distance two, Discrete Appl. Math. 157 (2009) 1677-1686. doi: 10.1016/j.dam.2009.02.004

[2] P. Bahls, Channel assignment on Cayley graphs, J. Graph Theory 67 (2011) 169-177. doi: 10.1002/jgt.20523

[3] H.L. Bodlaender, T. Kloks, R.B. Tan and J. van Leeuwen, Approximations for λ- colorings of graphs, Comput. J. 47 (2004) 193-204. doi: 10.1093/comjnl/47.2.193

[4] J.A. Bondy and U.S.R.Murty, Graph Theory (Springer, New York, 2008).

[5] T. Calamoneri, S. Caminiti, S. Olariu and R. Petreschi, On the L(h,k)-labeling of co-comparability graphs and circular-arc graphs, Networks 53 (2009) 27-34. doi: 10.1002/net.20257

[6] T. Calamoneri, The L(h,k)-labelling problem: An updated survey and annotated bib- liography, Comput. J. 54 (2011) 1344-1371. doi: 10.1093/comjnl/bxr037

[7] T. Calamoneri, The L(h,k)-labelling problem: An updated survey and annotated bib- liography, (2014). http://wwwusers.di.uniroma1.it/calamo/PDF-FILES/survey.pdf

[8] G.J. Chang and D. Kuo, The L(2, 1)-labeling problem on graphs, SIAM J. Discrete Math. 9 (1996) 309-316. doi: 10.1137/S0895480193245339

[9] J. Griggs and R.K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete Math. 5 (1992) 586-595. doi: 10.1137/0405048

[10] T. Hasunuma, T. Ishii, H. Ono and Y.Uno, A linear time algorithm for L(2, 1)- labeling of trees, Lect. Notes Comput. Sci. 5757 (2009) 35-46. doi: 10.1007/978-3-642-04128-0 4

[11] F. Havet, B. Reed and J.S. Sereni, L(2, 1)-labelling of graphs, in: Proc. 19th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, SIAM (2008) 621-630.

[12] Y.Z. Huang, C.Y. Chiang, L.H. Huang and H.G. Yeh, On L(2, 1)-labeling of gene- ralized Petersen graphs, J. Comb. Optim. 24 (2012) 266-279. doi: 10.1007/s10878-011-9380-8

[13] X. Li, V. Mak-Hau and S. Zhou, The L(2, 1)-labelling problem for cubic Cayley graphs on dihedral groups, J. Comb. Optim. 25 (2013) 716-736. doi: 10.1007/s10878-012-9525-4

[14] S. Panda and P. Goel, L(2, 1)-labeling of dually chordal graphs and strongly orderable graphs, Inform. Process. Lett. 112 (2012) 552-556. doi: 10.1016/j.ipl.2012.04.003

[15] F.S. Roberts, private communication through J. Griggs, (1988).

[16] D. Sakai, Labeling chordal graphs: Distance two condition, SIAM J. Discrete Math. 7 (1994) 133-140. doi: 10.1137/S0895480191223178

[17] Z. Shao and R.K. Yeh, The L(2, 1)-labeling and operations of graphs, IEEE Trans. Circuits Syst. I: Regul. Pap. 52 (2005) 668-671. doi: 10.1109/TCSI.2004.840484

[18] R.K. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Math. 306 (2006) 1217-1231. doi: 10.1016/j.disc.2005.11.029

[19] S. Zhou, Labeling Cayley graphs on Abelian groups, SIAM J. Discrete Math. 19 (2006) 985-1003. doi: 10.1137/S0895480102404458.