L(2, 1)-Labeling of Circulant Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 143-155

Voir la notice de l'article provenant de la source Library of Science

An L(2, 1)-labeling of a graph Γ is an assignment of non-negative integers to the vertices such that adjacent vertices receive labels that differ by at least 2, and those at a distance of two receive labels that differ by at least one. Let λ_2^1 (Γ) denote the least λ such that Γ admits an L(2, 1)-labeling using labels from { 0, 1, . . ., λ}. A Cayley graph of group G is called a circulant graph of order n, if G = ℤ_n. In this paper initially we investigate the upper bound for the span of the L(2, 1)-labeling for Cayley graphs on cyclic groups with “large” connection sets. Then we extend our observation and find the span of L(2, 1)-labeling for any circulants of order n.
Keywords: graph coloring, L(2, 1)-labeling, circulants
@article{DMGT_2019_39_1_a11,
     author = {Mitra, Sarbari and Bhoumik, Soumya},
     title = {L(2, {1)-Labeling} of {Circulant} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {143--155},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a11/}
}
TY  - JOUR
AU  - Mitra, Sarbari
AU  - Bhoumik, Soumya
TI  - L(2, 1)-Labeling of Circulant Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 143
EP  - 155
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a11/
LA  - en
ID  - DMGT_2019_39_1_a11
ER  - 
%0 Journal Article
%A Mitra, Sarbari
%A Bhoumik, Soumya
%T L(2, 1)-Labeling of Circulant Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 143-155
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a11/
%G en
%F DMGT_2019_39_1_a11
Mitra, Sarbari; Bhoumik, Soumya. L(2, 1)-Labeling of Circulant Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 143-155. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a11/