List Star Edge-Coloring of Subcubic Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 1037-1054
Voir la notice de l'article provenant de la source Library of Science
A star edge-coloring of a graph G is a proper edge coloring such that every 2-colored connected subgraph of G is a path of length at most 3. For a graph G, let the list star chromatic index of G, ch_st^' (G), be the minimum k such that for any k-uniform list assignment L for the set of edges, G has a star edge-coloring from L. Dvořák, Mohar and Šámal asked whether the list star chromatic index of every subcubic graph is at most 7. We prove that it is at most 8. We also prove that if the maximum average degree of a subcubic graph G is less than 73 (respectively, 52), then ch_st^' (G) ≤ 5 (respectively, ch_st^' (G) ≤ 6).
Keywords:
graph coloring, edge coloring, star coloring, planar graphs
@article{DMGT_2018_38_4_a11,
author = {Kerdjoudj, Samia and Kostochka, Alexandr and Raspaud, Andr\'e},
title = {List {Star} {Edge-Coloring} of {Subcubic} {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1037--1054},
publisher = {mathdoc},
volume = {38},
number = {4},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a11/}
}
TY - JOUR AU - Kerdjoudj, Samia AU - Kostochka, Alexandr AU - Raspaud, André TI - List Star Edge-Coloring of Subcubic Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 1037 EP - 1054 VL - 38 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a11/ LA - en ID - DMGT_2018_38_4_a11 ER -
Kerdjoudj, Samia; Kostochka, Alexandr; Raspaud, André. List Star Edge-Coloring of Subcubic Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 1037-1054. http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a11/