Tr -Span of Directed Wheel Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 871-888.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we consider T-colorings of directed graphs. In particular, we consider as a T-set the set Tr = 0, 1, 2, . . ., r−1, r+1, . . .. Exact values and bounds of the Tr-span of directed graphs whose underlying graph is a wheel graph are presented.
Keywords: T -coloring, digraph, wheel graph, span
@article{DMGT_2018_38_4_a0,
     author = {Besson, Marc and Tesman, Barry},
     title = {T\protect\textsubscript{r} {-Span} of {Directed} {Wheel} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {871--888},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a0/}
}
TY  - JOUR
AU  - Besson, Marc
AU  - Tesman, Barry
TI  - Tr -Span of Directed Wheel Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 871
EP  - 888
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a0/
LA  - en
ID  - DMGT_2018_38_4_a0
ER  - 
%0 Journal Article
%A Besson, Marc
%A Tesman, Barry
%T Tr -Span of Directed Wheel Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 871-888
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a0/
%G en
%F DMGT_2018_38_4_a0
Besson, Marc; Tesman, Barry. Tr -Span of Directed Wheel Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 871-888. http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a0/

[1] J. Fiala, D. Král and R. Škrekovski, A Brooks-type theorem for the generalized list T-coloring, SIAM J. Discrete Math. 19 (2005) 588–609. doi:10.1137/S0895480103437870

[2] W.K. Hale, Frequency assignment: theory and applications, Proc. IEEE 68 (1980) 1497–1514. doi:10.1109/PROC.1980.11899

[3] R. Janczewski, Greedy T-colorings of graphs, Discrete Math. 309 (2009) 1685–1690. doi:10.1016/j.disc.2008.01.049

[4] J.S.-T. Juan, I. Sun and P.-W. Wu, T-coloring of folded hypercubes, Taiwanese J. Math. 13 (2009) 1331–1341. doi:10.11650/twjm/1500405511

[5] K. Junosza-Szaniawski and P. Rzążewski, An exact algorithm for the generalized list T-coloring problem, Discrete Math. Theor. Comput. Sci. 16 (2014) 77–94.

[6] P. Sivagami and I. Rajasingh, T-coloring of certain networks, Math. Comput. Sci. 10 (2016) 239–248. doi:10.1007/s11786-016-0260-6

[7] B.A. Tesman, TcColorings of digraphs, Congr. Numer. 159 (2002) 167–176.

[8] B.A. Tesman, Meaningfulness of list T-colorings of graphs, Congr. Numer. 207 (2011) 105–109.