Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_3_a6, author = {Edwards, Michelle and MacGillivray, Gary and Nasserasr, Shahla}, title = {Reconfiguring {Minimum} {Dominating} {Sets:} {The} {\ensuremath{\gamma}-Graph} of a {Tree}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {703--716}, publisher = {mathdoc}, volume = {38}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_3_a6/} }
TY - JOUR AU - Edwards, Michelle AU - MacGillivray, Gary AU - Nasserasr, Shahla TI - Reconfiguring Minimum Dominating Sets: The γ-Graph of a Tree JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 703 EP - 716 VL - 38 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_3_a6/ LA - en ID - DMGT_2018_38_3_a6 ER -
%0 Journal Article %A Edwards, Michelle %A MacGillivray, Gary %A Nasserasr, Shahla %T Reconfiguring Minimum Dominating Sets: The γ-Graph of a Tree %J Discussiones Mathematicae. Graph Theory %D 2018 %P 703-716 %V 38 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2018_38_3_a6/ %G en %F DMGT_2018_38_3_a6
Edwards, Michelle; MacGillivray, Gary; Nasserasr, Shahla. Reconfiguring Minimum Dominating Sets: The γ-Graph of a Tree. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 3, pp. 703-716. http://geodesic.mathdoc.fr/item/DMGT_2018_38_3_a6/
[1] S. Alikhani, D. Fatehi and S. Klavžar, On the structure of dominating graphs (2015). arXiv:1512.07514
[2] E. Connelly, K.R. Hutson and S.T. Hedetniemi, A note on γ-graphs, AKCE Int. J. Graphs Comb. 8 (2011) 23–31.
[3] M. Edwards, Vertex-Criticality and Bicriticality for Independent Domination and Total Domination in Graphs (PhD Thesis, Department of Mathematics and Statistics, University of Victoria, 2015). http://hdl.handle.net/1828/6097
[4] G.H. Fricke, S.M. Hedetniemi, S.T. Hedetniemi and K.R. Hutson, γ-graphs of graphs, Discuss. Math. Graph Theory 31 (2011) 517–531. doi:10.7151/dmgt.1562
[5] R. Haas and K. Seyffarth, The k-dominating graph, Graphs Combin. 30 (2014) 609–617. doi:10.1007/s00373-013-1302-3
[6] A. Haddadan, T. Ito, A.E. Mouawad, N. Nishimura, H. Ono, A. Suzuki and Y. Tebbal, The complexity of dominating set reconfiguration, Lecture Notes in Comput. Sci. 9214 (2015) 398–409. doi:10.1007/978-3-319-21840-3_33
[7] J. van den Heuvel, The complexity of change, in: S.R. Blackburn, S. Gerke, M. Wildon (Eds.), Surveys in Combinatorics, London Mathematical Society Lecture Notes Series 409 (Cambridge University Press, 2013) 127–160.
[8] T. Ito, E.D. Demaine, N.J.A. Harvey, C.H. Papadimitriou, M. Sideri, R. Uehara and Y. Uno, On the complexity of reconfiguration problems, Theoret. Comput. Sci. 412 (2011) 1054–1065. doi:10.1016/j.tcs.2010.12.005
[9] S.A. Lakshmanan and A. Vijayakumar, The gamma graph of a graph, AKCE Int. J. Graphs Comb. 7 (2010) 53–59.
[10] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225–233. doi:10.2140/pjm.1975.61.225
[11] M. Middendorf and F. Pfeiffer, Weakly transitive orientations, Hasse diagrams and string graphs, Discrete Math. 111 (1993) 393–400. doi:10.1016/0012-365X(93)90176-T
[12] A.E. Mouawad, N. Nishimura and A. Suzuki, Reconfiguration of dominating sets (2014). arXiv:1401.5714
[13] N. Sridharan and K. Subramanian, Trees and unicyclic graphs are γ-graphs, J. Combin. Math. Combin. Comput. 69 (2009) 231–236.
[14] K. Subramanian and N. Sridharan, γ-graph of a graph, Bull. Kerala Math. Assoc. 5 (2008) 17–34.