Equitable Coloring and Equitable Choosability of Graphs with Small Maximum Average Degree
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 3, pp. 829-839
Voir la notice de l'article provenant de la source Library of Science
A graph is said to be equitably k-colorable if the vertex set V (G) can be partitioned into k independent subsets V_1, V_2, . . ., V_k such that | | V_i |−| V_j | | ≤ 1 (1 ≤ i, j ≤ k). A graph G is equitably k-choosable if, for any given k-uniform list assignment L, G is L-colorable and each color appears on at most |V(G)|/ k vertices. In this paper, we prove that if G is a graph such that mad(G) lt; 3, then G is equitably k-colorable and equitably k- choosable where k ≥max{Δ (G), 4 }. Moreover, if G is a graph such that mad(G) lt; 12/5, then G is equitably k-colorable and equitably k-choosable where k ≥max{Δ (G), 3 }.
Keywords:
graph coloring, equitable choosability, maximum average degree
@article{DMGT_2018_38_3_a12,
author = {Dong, Aijun and Zhang, Xin},
title = {Equitable {Coloring} and {Equitable} {Choosability} of {Graphs} with {Small} {Maximum} {Average} {Degree}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {829--839},
publisher = {mathdoc},
volume = {38},
number = {3},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_3_a12/}
}
TY - JOUR AU - Dong, Aijun AU - Zhang, Xin TI - Equitable Coloring and Equitable Choosability of Graphs with Small Maximum Average Degree JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 829 EP - 839 VL - 38 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_3_a12/ LA - en ID - DMGT_2018_38_3_a12 ER -
%0 Journal Article %A Dong, Aijun %A Zhang, Xin %T Equitable Coloring and Equitable Choosability of Graphs with Small Maximum Average Degree %J Discussiones Mathematicae. Graph Theory %D 2018 %P 829-839 %V 38 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2018_38_3_a12/ %G en %F DMGT_2018_38_3_a12
Dong, Aijun; Zhang, Xin. Equitable Coloring and Equitable Choosability of Graphs with Small Maximum Average Degree. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 3, pp. 829-839. http://geodesic.mathdoc.fr/item/DMGT_2018_38_3_a12/