Generalized Hamming Graphs: Some New Results
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 3, pp. 627-633.

Voir la notice de l'article provenant de la source Library of Science

A projection of a vertex x of a graph G over a subset S of vertices is a vertex of S at minimal distance from x. The study of projections over quasi-intervals gives rise to a new characterization of quasi-median graphs.
Keywords: generalized median graphs, Hamming graphs, quasi-median graphs, quasi-Hilbertian graphs
@article{DMGT_2018_38_3_a1,
     author = {Bedrane, Amari and Abdelhafid, Berrachedi},
     title = {Generalized {Hamming} {Graphs:} {Some} {New} {Results}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {627--633},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_3_a1/}
}
TY  - JOUR
AU  - Bedrane, Amari
AU  - Abdelhafid, Berrachedi
TI  - Generalized Hamming Graphs: Some New Results
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 627
EP  - 633
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_3_a1/
LA  - en
ID  - DMGT_2018_38_3_a1
ER  - 
%0 Journal Article
%A Bedrane, Amari
%A Abdelhafid, Berrachedi
%T Generalized Hamming Graphs: Some New Results
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 627-633
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_3_a1/
%G en
%F DMGT_2018_38_3_a1
Bedrane, Amari; Abdelhafid, Berrachedi. Generalized Hamming Graphs: Some New Results. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 3, pp. 627-633. http://geodesic.mathdoc.fr/item/DMGT_2018_38_3_a1/

[1] N. Badji and A. Berrachedi, Generalized median graphs, in: Actes du Colloque sur l’opt. et les sys. d’infor., COSI’04 (UMM Tizi Ouzou, Algerie, 2004) 216–225.

[2] H.J. Bandelt, Retracts of hypercubes, J. Graph Theory 8 (1984) 501–510. doi:10.1002/jgt.3190080407

[3] H.J. Bandelt, H.M. Mulder and E. Wilkeit, Quasi-median graphs and algebras, J. Graph Theory 18 (1994) 681–703. doi:10.1002/jgt.3190180705

[4] A. Berrachedi, A new characterization of median graphs, Discrete Math. 128 (1994) 385–387. doi:10.1016/0012-365X(94)90128-7

[5] A. Berrachedi and M. Mollard, Median graphs and hypercubes, some new characterizations, Discrete Math. 208/209 (1999) 71–75. doi:10.1016/S0012-365X(99)00063-1

[6] F.R.K. Chung, R.L. Graham and M.E. Saks, A dynamic location problem for graphs, Combinatorica 9 (1989) 111–131. doi:10.1007/BF02124674

[7] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (John Wiley & Sons, New York, 2000).

[8] H.M. Mulder, n-cubes and median graphs, J. Graph Theory 4 (1980) 107–110. doi:10.1002/jgt.3190040112

[9] H.M. Mulder, The Interval Function of a Graph (Mathematical Centre Tracks 132, Mathematish Centrum, Amesterdam, 1980).

[10] L. Nebeský, Algebraic properties of Husimi trees, Časopis Pešt. Math. 107 (1982) 116–123.

[11] E. Wilkeit, The retracts of Hamming graphs, Discrete Math. 102 (1992) 197–218. doi:10.1016/0012-365X(92)90054-J