On the Palette Index of Complete Bipartite Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 463-476.

Voir la notice de l'article provenant de la source Library of Science

The palette of a vertex x of a graph G determined by a proper edge colouring φ of G is the set φ(xy) : xy ∈ E(G) and the diversity of φ is the number of different palettes determined by φ. The palette index of G is the minimum of diversities of φ taken over all proper edge colourings φ of G. In the article we determine the palette index of Km,n for m ≤ 5 and pose two conjectures concerning the palette index of complete bipartite graphs.
Keywords: edge colouring, palette index, bipartite graph
@article{DMGT_2018_38_2_a9,
     author = {Hor\v{n}\'ak, Mirko and Hud\'ak, Juraj},
     title = {On the {Palette} {Index} of {Complete} {Bipartite} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {463--476},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a9/}
}
TY  - JOUR
AU  - Horňák, Mirko
AU  - Hudák, Juraj
TI  - On the Palette Index of Complete Bipartite Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 463
EP  - 476
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a9/
LA  - en
ID  - DMGT_2018_38_2_a9
ER  - 
%0 Journal Article
%A Horňák, Mirko
%A Hudák, Juraj
%T On the Palette Index of Complete Bipartite Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 463-476
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a9/
%G en
%F DMGT_2018_38_2_a9
Horňák, Mirko; Hudák, Juraj. On the Palette Index of Complete Bipartite Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 463-476. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a9/

[1] S. Bonvicini and G. Mazzuoccolo, Edge-colorings of 4- regular graphs with the minimum number of palettes, Graphs Combin. 32 (2016) 1293–1311. doi:10.1007/s00373-015-1658-7

[2] M. Horňák, R. Kalinowski, M.Meszka andM.Woźniak, Minimum number of palettes in edge colorings, Graphs Combin. 30 (2014) 619–626. doi:10.1007/s00373-013-1298-8

[3] C.C. Lindner, M. Meszka and A. Rosa, Palettes in block colourings of designs, Australas. J. Combin. 56 (2013) 235–243.