On the Palette Index of Complete Bipartite Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 463-476
Cet article a éte moissonné depuis la source Library of Science
The palette of a vertex x of a graph G determined by a proper edge colouring φ of G is the set φ(xy) : xy ∈ E(G) and the diversity of φ is the number of different palettes determined by φ. The palette index of G is the minimum of diversities of φ taken over all proper edge colourings φ of G. In the article we determine the palette index of Km,n for m ≤ 5 and pose two conjectures concerning the palette index of complete bipartite graphs.
Keywords:
edge colouring, palette index, bipartite graph
@article{DMGT_2018_38_2_a9,
author = {Hor\v{n}\'ak, Mirko and Hud\'ak, Juraj},
title = {On the {Palette} {Index} of {Complete} {Bipartite} {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {463--476},
year = {2018},
volume = {38},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a9/}
}
Horňák, Mirko; Hudák, Juraj. On the Palette Index of Complete Bipartite Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 463-476. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a9/
[1] S. Bonvicini and G. Mazzuoccolo, Edge-colorings of 4- regular graphs with the minimum number of palettes, Graphs Combin. 32 (2016) 1293–1311. doi:10.1007/s00373-015-1658-7
[2] M. Horňák, R. Kalinowski, M.Meszka andM.Woźniak, Minimum number of palettes in edge colorings, Graphs Combin. 30 (2014) 619–626. doi:10.1007/s00373-013-1298-8
[3] C.C. Lindner, M. Meszka and A. Rosa, Palettes in block colourings of designs, Australas. J. Combin. 56 (2013) 235–243.