Bounds on the Locating-Domination Number and Differentiating-Total Domination Number in Trees
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 455-462.

Voir la notice de l'article provenant de la source Library of Science

A subset S of vertices in a graph G = (V,E) is a dominating set of G if every vertex in V − S has a neighbor in S, and is a total dominating set if every vertex in V has a neighbor in S. A dominating set S is a locating-dominating set of G if every two vertices x, y ∈ V − S satisfy N(x) ∩ S N(y) ∩ S. The locating-domination number γ_L (G) is the minimum cardinality of a locating-dominating set of G. A total dominating set S is called a differentiating-total dominating set if for every pair of distinct vertices u and v of G, N[u] ∩ S N[v] ∩ S. The minimum cardinality of a differentiating-total dominating set of G is the differentiating-total domination number of G, denoted by γ_t^D (G). We obtain new upper bounds for the locating-domination number, and the differentiating-total domination number in trees. Moreover, we characterize all trees achieving equality for the new bounds.
Keywords: locating-dominating set, differentiating-total dominating set, tree
@article{DMGT_2018_38_2_a8,
     author = {Rad, Nader Jafari and Rahbani, Hadi},
     title = {Bounds on the {Locating-Domination} {Number} and {Differentiating-Total} {Domination} {Number} in {Trees}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {455--462},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a8/}
}
TY  - JOUR
AU  - Rad, Nader Jafari
AU  - Rahbani, Hadi
TI  - Bounds on the Locating-Domination Number and Differentiating-Total Domination Number in Trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 455
EP  - 462
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a8/
LA  - en
ID  - DMGT_2018_38_2_a8
ER  - 
%0 Journal Article
%A Rad, Nader Jafari
%A Rahbani, Hadi
%T Bounds on the Locating-Domination Number and Differentiating-Total Domination Number in Trees
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 455-462
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a8/
%G en
%F DMGT_2018_38_2_a8
Rad, Nader Jafari; Rahbani, Hadi. Bounds on the Locating-Domination Number and Differentiating-Total Domination Number in Trees. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 455-462. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a8/

[1] M. Blidia, M. Chellali, F. Maffray, J. Moncel and A. Semri, Locating-domination and identifying codes in trees, Australas. J. Combin. 39 (2007) 219–232.

[2] M. Blidia and W. Dali, A characterization of locating-domination edge critical graphs, Australas. J. Combin. 44 (2009) 297–300.

[3] M. Blidia and W. Dali, A characterization of locating-total domination edge critical graphs, Discuss. Math. Graph Theory 31 (2011) 197–202. doi:10.7151/dmgt.1538

[4] M. Blidia, F. Favaron and R. Lounes, Locating-domination, 2- domination and independence in trees, Australas. J. Combin. 42 (2008) 309–319.

[5] M. Chellali, On locating and differentiating-total domination in trees, Discuss. Math. Graph Theory 28 (2008) 383–392. doi:10.7151/dmgt.1414

[6] X.-G. Chen and M.Y. Sohn, Bounds on the locating-total domination number of a tree, Discrete Appl. Math. 159 (2011) 769–773. doi:10.1016/j.dam.2010.12.025

[7] F. Foucaud, M.A. Henning, C. Löwenstein and T. Sasse, Locating-dominating sets in twin-free graphs, Discrete Appl. Math. 200 (2016) 52–58. doi:10.1016/j.dam.2015.06.038

[8] T.W. Haynes, M.A. Henning and J. Howard, Locating and total dominating sets in trees, Discrete Appl. Math. 154 (2006) 1293–1300. doi:10.1016/j.dam.2006.01.002

[9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).

[10] M.A. Henning and N. Jafari Rad, Locating-total domination in graphs, Discrete Appl. Math. 160 (2012) 1986–1993. doi:10.1016/j.dam.2012.04.004

[11] M.A. Henning and C. Löwenstein, Locating-total domination in claw-free cubic graphs, Discrete Math. 312 (2012) 3107–3116. doi:10.1016/j.disc.2012.06.024

[12] W. Ning, M. Lu and J. Guo, Bounds on the differentiating-total domination number of a tree, Discrete Appl. Math. 200 (2016) 153–160. doi:10.1016/j.dam.2015.06.029

[13] J.L. Sewell and P.J. Slater, A sharp lower bound for locating-dominating sets in trees, Australas. J. Combin. 60 (2014) 136–149.

[14] S.J. Seo and P.J. Slater, Open neighborhood locating dominating sets, Australas. J. Combin. 46 (2010) 109–119.

[15] P.J. Slater, Dominating and location in acyclic graphs, Networks 17 (1987) 55–64. doi:10.1002/net.3230170105

[16] P.J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci. 22 (1988) 445–455.