Almost Self-Complementary Uniform Hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 607-610.

Voir la notice de l'article provenant de la source Library of Science

A k-uniform hypergraph (k-hypergraph) is almost self-complementary if it is isomorphic with its complement in the complete k-uniform hypergraph minus one edge. We prove that an almost self-complementary k-hypergraph of order n exists if and only if nk is odd.
Keywords: uniform hypergraph
@article{DMGT_2018_38_2_a18,
     author = {Wojda, Adam Pawe{\l}},
     title = {Almost {Self-Complementary} {Uniform} {Hypergraphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {607--610},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a18/}
}
TY  - JOUR
AU  - Wojda, Adam Paweł
TI  - Almost Self-Complementary Uniform Hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 607
EP  - 610
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a18/
LA  - en
ID  - DMGT_2018_38_2_a18
ER  - 
%0 Journal Article
%A Wojda, Adam Paweł
%T Almost Self-Complementary Uniform Hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 607-610
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a18/
%G en
%F DMGT_2018_38_2_a18
Wojda, Adam Paweł. Almost Self-Complementary Uniform Hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 607-610. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a18/

[1] C.R.J. Clapham, Graphs self-complementary in Kn − e, Discrete Math. 81 (1990) 229–235. doi:10.1016/0012-365X(90)90062-M

[2] J.W.L. Glaisher, On the residue of a binomial coefficient with respect to a prime modulus, Quart. J. Math. 30 (1899) 150–156.

[3] L.N. Kamble, C.M. Deshpande and B.Y. Bam, Almost self-complementary 3- uniform hypergraphs, Discuss. Math. Graph Theory 37 (2017) 131–140. doi:10.7151/dmgt.1919

[4] S.H. Kimball, T.R. Hatcher, J.A. Riley and L. Moser, Solution to problem E 1288 : Odd binomial coefficients, Amer. Math. Monthly 65 (1958) 368–369. doi:10.2307/2308812

[5] E.E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852) 93–146. doi:10.1515/crll.1852.44.93

[6] E. Lucas, Sur les congruences des nombres eulériens st des coefficients differentiels, Bull. Soc. Math. France 6 (1878) 49–54. doi:10.24033/bsmf.127

[7] G. Ringenboim, Fermat’s Last Theorem for Amateurs (Springer Verlag, 1999).

[8] A. Szymański and A.P.Wojda, A note on k-uniform self-complementary hypergraphs of given order, Discuss. Math. Graph Theory 29 (2009) 199–202. doi:10.7151/dmgt.1440

[9] A.P. Wojda, Self-complementary hypergraphs, Discuss. Math. Graph Theory 26 (2006) 217–224. doi:/10.7151/dmgt.1314