Another View of Bipartite Ramsey Numbers
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 587-605
Cet article a éte moissonné depuis la source Library of Science
For bipartite graphs F and H and a positive integer s, the s-bipartite Ramsey number BRs(F,H) of F and H is the smallest integer t with t ≥ s such that every red-blue coloring of Ks,t results in a red F or a blue H. We evaluate this number for all positive integers s when F = K2,2 and H ∈ K2,3,K3,3.
Keywords:
Ramsey number, bipartite Ramsey number, s -bipartite Ramsey number
@article{DMGT_2018_38_2_a17,
author = {Bi, Zhenming and Chartrand, Gary and Zhang, Ping},
title = {Another {View} of {Bipartite} {Ramsey} {Numbers}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {587--605},
year = {2018},
volume = {38},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a17/}
}
Bi, Zhenming; Chartrand, Gary; Zhang, Ping. Another View of Bipartite Ramsey Numbers. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 587-605. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a17/
[1] E. Andrews, G. Chartrand, C. Lumduanhom and P. Zhang, Stars and their k-Ramsey numbers, Graphs Combin. 33 (2017) 257–274. doi:10.1007/s00373-017-1756-9
[2] L.W. Beineke and A.J. Schwenk, On a bipartite form of the Ramsey problem, in: Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975) 17–22.
[3] Z. Bi, G. Chartrand and P. Zhang, Party problems and Ramsey numbers, preprint.
[4] G. Chartrand and P. Zhang, Chromatic Graph Theory (Chapman & Hall/CRC Press, Boca Raton, FL, 2009).
[5] T.P. Kirkman, On a problem in combinatorics, Cambridge and Dublin Math. J. 2 (1847) 191–204.