Some Results on the Independence Polynomial of Unicyclic Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 515-524
Voir la notice de l'article provenant de la source Library of Science
Let G be a simple graph on n vertices. An independent set in a graph is a set of pairwise non-adjacent vertices. The independence polynomial of G is the polynomial I(G,x)= Σ_k=0^n s(G,k)x^k, where s(G, k) is the number of independent sets of G with size k and s(G, 0) = 1. A unicyclic graph is a graph containing exactly one cycle. Let C_n be the cycle on n vertices. In this paper we study the independence polynomial of unicyclic graphs. We show that among all connected unicyclic graphs G on n vertices (except two of them), I(G, t) gt; I(C_n, t) for sufficiently large t. Finally for every n ≥ 3 we find all connected graphs H such that I(H, x) = I(C_n, x).
Keywords:
independence polynomial, independent set, unicyclic graphs
@article{DMGT_2018_38_2_a13,
author = {Oboudi, Mohammad Reza},
title = {Some {Results} on the {Independence} {Polynomial} of {Unicyclic} {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {515--524},
publisher = {mathdoc},
volume = {38},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a13/}
}
TY - JOUR AU - Oboudi, Mohammad Reza TI - Some Results on the Independence Polynomial of Unicyclic Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 515 EP - 524 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a13/ LA - en ID - DMGT_2018_38_2_a13 ER -
Oboudi, Mohammad Reza. Some Results on the Independence Polynomial of Unicyclic Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 515-524. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a13/