Some Results on the Independence Polynomial of Unicyclic Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 515-524

Voir la notice de l'article provenant de la source Library of Science

Let G be a simple graph on n vertices. An independent set in a graph is a set of pairwise non-adjacent vertices. The independence polynomial of G is the polynomial I(G,x)= Σ_k=0^n s(G,k)x^k, where s(G, k) is the number of independent sets of G with size k and s(G, 0) = 1. A unicyclic graph is a graph containing exactly one cycle. Let C_n be the cycle on n vertices. In this paper we study the independence polynomial of unicyclic graphs. We show that among all connected unicyclic graphs G on n vertices (except two of them), I(G, t) gt; I(C_n, t) for sufficiently large t. Finally for every n ≥ 3 we find all connected graphs H such that I(H, x) = I(C_n, x).
Keywords: independence polynomial, independent set, unicyclic graphs
@article{DMGT_2018_38_2_a13,
     author = {Oboudi, Mohammad Reza},
     title = {Some {Results} on the {Independence} {Polynomial} of {Unicyclic} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {515--524},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a13/}
}
TY  - JOUR
AU  - Oboudi, Mohammad Reza
TI  - Some Results on the Independence Polynomial of Unicyclic Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 515
EP  - 524
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a13/
LA  - en
ID  - DMGT_2018_38_2_a13
ER  - 
%0 Journal Article
%A Oboudi, Mohammad Reza
%T Some Results on the Independence Polynomial of Unicyclic Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 515-524
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a13/
%G en
%F DMGT_2018_38_2_a13
Oboudi, Mohammad Reza. Some Results on the Independence Polynomial of Unicyclic Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 515-524. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a13/