Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_1_a2, author = {Changat, Manoj and Hossein Nezhad, Ferdoos and Mulder, Henry Martyn and Narayanan, N.}, title = {A {Note} on the {Interval} {Function} of a {Disconnected} {Graph}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {39--48}, publisher = {mathdoc}, volume = {38}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a2/} }
TY - JOUR AU - Changat, Manoj AU - Hossein Nezhad, Ferdoos AU - Mulder, Henry Martyn AU - Narayanan, N. TI - A Note on the Interval Function of a Disconnected Graph JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 39 EP - 48 VL - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a2/ LA - en ID - DMGT_2018_38_1_a2 ER -
%0 Journal Article %A Changat, Manoj %A Hossein Nezhad, Ferdoos %A Mulder, Henry Martyn %A Narayanan, N. %T A Note on the Interval Function of a Disconnected Graph %J Discussiones Mathematicae. Graph Theory %D 2018 %P 39-48 %V 38 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a2/ %G en %F DMGT_2018_38_1_a2
Changat, Manoj; Hossein Nezhad, Ferdoos; Mulder, Henry Martyn; Narayanan, N. A Note on the Interval Function of a Disconnected Graph. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 39-48. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a2/
[1] K. Balakrishnan, M. Changat, A.K. Lakshmikuttyamma, J. Mathew, H.M. Mulder, P.G. Narasimha-Shenoi and N. Narayanan, Axiomatic characterization of the interval function of a block graph, Discrete Math. 338 (2015) 885–894. doi:10.1016/j.disc.2015.01.004
[2] M. Changat, S. Klavžar and H.M. Mulder, The all-paths transit function of a graph, Czechoslovak Math. J. 51 (2001) 439–448. doi:10.1023/A:1013715518448
[3] M. Changat and J. Mathew, Induced path transit function, monotone and Peano axioms, Discrete Math. 28 (2004) 185–194. doi:10.1016/j.disc.2004.02.017
[4] M. Changat, H.M. Mulder and G. Sierksma, Convexities related to path properties on graphs, Discrete Math. 290 (2005) 117–131. doi:10.1016/j.disc.2003.07.014
[5] M. Changat, J. Mathew and H.M. Mulder, Induced path transit function, betweenness and monotonicity, Electron. Notes Discrete Math. 15 (2003) 60–63. doi:10.1016/S1571-0653(04)00531-1
[6] M. Changat, J. Mathew and H.M. Mulder, The induced path function, monotonicity and betweenness, Discrete Appl. Math. 158 (2010) 426–433. doi:10.1016/j.dam.2009.10.004
[7] M. Changat, A.K. Lakshmikuttyamma, J. Mathew, I. Peterin, P.G. Narasimha-Shenoi, G. Seethakuttyamma and S. Špacapan, A forbidden subgraph characterization of some graph classes using betweenness axioms, Discrete Math. 313 (2013) 951–958. doi:10.1016/j.disc.2013.01.013
[8] P. Duchet, Convex sets in graphs II. Minimal path convexity, J. Combin. Theory Ser. B 44 (1988) 307–316. doi:10.1016/0095-8956(88)90039-1
[9] M.A. Morgana and H.M. Mulder, The induced path convexity, betweenness and svelte graphs, Discrete Math. 254 (2002) 349–370. doi:10.1016/S0012-365X(01)00296-5
[10] H.M. Mulder, The Interval Function of a Graph (MC Tracts 132, Mathematisch Centrum, Amsterdam, 1980).
[11] H.M. Mulder, Transit functions on graphs ( and posets ), in: Convexity in Discrete Structures (M. Changat, S. Klavžar, H.M. Mulder, A. Vijayakumar, Eds.), Lecture Notes Ser. 5, Ramanujan Math. Soc. (2008) 117–130.
[12] H.M. Mulder and L. Nebeský, Axiomatic characterization of the interval function of a graph, European J. Combin. 30 (2009) 1172–1185. doi:10.1016/j.ejc.2008.09.007
[13] L. Nebeský, A characterization of the interval function of a connected graph, Czechoslovak Math. J. 44 (1994) 173–178.
[14] L. Nebeský, Characterizing the interval function of a connected graph, Math. Bohem. 123 (1998) 137–144.
[15] L. Nebeský, The interval function of a connected graph and a characterization of geodetic graphs, Math. Bohem. 126 (2001) 247–254.
[16] L. Nebeský, A characterization of the interval function of a ( finite or infinite ) connected graph, Czechoslovak Math. J. 51 (2001) 635–642. doi:10.1023/A:1013744324808
[17] L. Nebeský, The induced paths in a connected graph and a ternary relation determined by them, Math. Bohem. 127 (2002) 397–408.