Upper Bounds for the Strong Chromatic Index of Halin Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 5-26
Voir la notice de l'article provenant de la source Library of Science
The strong chromatic index of a graph G, denoted by χ_s^′ (G), is the minimum number of vertex induced matchings needed to partition the edge set of G. Let T be a tree without vertices of degree 2 and have at least one vertex of degree greater than 2. We construct a Halin graph G by drawing T on the plane and then drawing a cycle C connecting all its leaves in such a way that C forms the boundary of the unbounded face. We call T the characteristic tree of G. Let G denote a Halin graph with maximum degree Δ and characteristic tree T. We prove that χ_s^′ (G) ≤ 2 Δ + 1 when Δ≥ 4. In addition, we show that if Δ = 4 and G is not a wheel, then χ_s^′ (G) ≤χ_s^′ (T) + 2. A similar result for Δ = 3 was established by Lih and Liu [21].
Keywords:
strong edge-coloring, strong chromatic index, Halin graphs
@article{DMGT_2018_38_1_a0,
author = {Hu, Ziyu and Lih, Ko-Wei and Liu, Daphne Der-Fen},
title = {Upper {Bounds} for the {Strong} {Chromatic} {Index} of {Halin} {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {5--26},
publisher = {mathdoc},
volume = {38},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a0/}
}
TY - JOUR AU - Hu, Ziyu AU - Lih, Ko-Wei AU - Liu, Daphne Der-Fen TI - Upper Bounds for the Strong Chromatic Index of Halin Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 5 EP - 26 VL - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a0/ LA - en ID - DMGT_2018_38_1_a0 ER -
Hu, Ziyu; Lih, Ko-Wei; Liu, Daphne Der-Fen. Upper Bounds for the Strong Chromatic Index of Halin Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 5-26. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a0/