Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_1_a0, author = {Hu, Ziyu and Lih, Ko-Wei and Liu, Daphne Der-Fen}, title = {Upper {Bounds} for the {Strong} {Chromatic} {Index} of {Halin} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {5--26}, publisher = {mathdoc}, volume = {38}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a0/} }
TY - JOUR AU - Hu, Ziyu AU - Lih, Ko-Wei AU - Liu, Daphne Der-Fen TI - Upper Bounds for the Strong Chromatic Index of Halin Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 5 EP - 26 VL - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a0/ LA - en ID - DMGT_2018_38_1_a0 ER -
Hu, Ziyu; Lih, Ko-Wei; Liu, Daphne Der-Fen. Upper Bounds for the Strong Chromatic Index of Halin Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 5-26. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a0/
[1] L.D. Andersen, The strong chromatic index of a cubic graph is at most 10, Discrete Math. 108 (1992) 231–252. doi:10.1016/0012-365X(92)90678-9
[2] J. Bensmail, A. Harutyunyan, H. Hocquard and P. Valicov, Strong edge-coloring of sparse planar graphs, Discrete Appl. Math. 179 (2014) 229–234. doi:10.1016/j.dam.2014.07.006
[3] O.V. Borodin and A.O. Ivanova, Precise upper bound for the strong edge chromatic number of sparse planar graphs, Discuss. Math. Graph Theory 33 (2013) 759–770. doi:10.7151/dmgt.1708
[4] H. Bruhn and F. Joos, A stronger bound for the strong chromatic index, Electron. Notes Discrete Math. 49 (2015) 277–284. doi:10.1016/j.endm.2015.06.038
[5] G.J. Chang and G.-H. Duh, On the precise value of the strong chromatic-index of a planar graph with a large girth . arXiv: 1508.03052
[6] G.J. Chang and D. Liu, Strong edge-coloring for cubic Halin graphs, Discrete Math. 312 (2012) 1468–1475. doi:10.1016/j.disc.2012.01.014
[7] G.J. Chang, M. Montassier, A. Pêcher and A. Raspaud, Strong chromatic index of planar graphs with large girth, Discuss. Math. Graph Theory 34 (2014) 723–733. doi:10.7151/dmgt.1763
[8] D.W. Cranston, Strong edge-coloring of graphs with maximum degree 4 using 22 colors, Discrete Math. 306 (2006) 2772–2778. doi:10.1016/j.disc.2006.03.053
[9] P. DeOrsey, J. Diemunsch, M. Ferrara, N. Graber, S.G. Hartke, S. Jahanbekam, B. Lidicky, L.L. Nelsen, D. Stolee and E. Sullivan, On the strong chromatic index of sparse graphs . arXiv: 1508.03515
[10] P. Erdős, Problems and results in combinatorial analysis and graph theory, Discrete Math. 72 (1988) 81–92. doi:10.1016/0012-365X(88)90196-3
[11] P. Erdős and J. Nešetřil, Problem, in: Irregularities of Partitions, G. Halász and V.T. Sós (Eds.) (Springer, Berlin, 1989) 162–163.
[12] R.J. Faudree, R.H. Schelp, A. Gyárfás and Zs. Tuza, The strong chromatic index of graphs, Ars Combin. 29B (1990) 205–211.
[13] J.L. Fouquet and J. Jolivet, Strong edge-coloring of graphs and applications to multi-k-gons, Ars Combin. 16A (1983) 141–150.
[14] J.L. Fouquet and J. Jolivet, Strong edge-coloring of cubic planar graphs, Progress in Graph Theory in: J.A. Bondy and U.S.R. Murty (Ed(s)), (Academic Press, Toronto, 1984) 247–264.
[15] M.C. Golumbic and M. Lewenstein, New results on induced matchings, Discrete Appl. Math. 101 (2000) 157–165. doi:10.1016/S0166-218X(99)00194-8
[16] H. Hocquard, M. Montassier, A. Raspaud and P. Valicov, On strong edge-colouring of subcubic graphs, Discrete Appl. Math. 161 (2013) 2467–2479. doi:10.1016/j.dam.2013.05.021
[17] P. Horák, The strong chromatic index of graphs with maximum degree four, in: R. Bodendiek and K. Wagner (Ed(s)), Contemporary Methods in Graph Theory (BI Wissenschaft-Verlag, Mannheim, 1990) 399–403.
[18] P. Horák, H. Qing and W.T. Trotter, Induced matchings in cubic graphs, J. Graph Theory 17 (1993) 151–160. doi:10.1002/jgt.3190170204
[19] D. Hudák, B. Lužar, R. Soták and R. Škrekovski, Strong edge-coloring of planar graphs, Discrete Math. 324 (2014) 41–49. doi:10.1016/j.disc.2014.02.002
[20] H.-H. Lai, K.-W. Lih and P.-Y. Tsai, The strong chromatic index of Halin graphs, Discrete Math. 312 (2012) 1536–1541. doi:10.1016/j.disc.2011.09.016
[21] K.-W. Lih and D.D.-F. Liu, On the strong chromatic index of cubic Halin graphs, Appl. Math. Lett. 25 (2012) 898–901. doi:10.1016/j.aml.2011.10.046
[22] M. Molloy and B. Reed, A bound on the strong chromatic index of a graph, J. Combin. Theory Ser. B 69 (1997) 103–109. doi:10.1006/jctb.1997.1724
[23] W.C. Shiu, P.C.B. Lam and W.K. Tam, On strong chromatic index of Halin graphs, J. Combin. Math. Combin. Comput. 57 (2006) 211–222.
[24] W.C. Shiu and W.K. Tam, The strong chromatic index of complete cubic Halin graphs, Appl. Math. Lett. 22 (2009) 754–758. doi:10.1016/j.aml.2008.08.019
[25] J. Wu and W. Lin, The strong chromatic index of a class of graphs, Discrete Math. 308 (2008) 6254–6261. doi:10.1016/j.disc.2007.11.051