Twin Minus Total Domination Numbers In Directed Graphs
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 989-1004
Voir la notice de l'article provenant de la source Library of Science
Let D = (V,A) be a finite simple directed graph (shortly, digraph). A function f : V →−1, 0, 1 is called a twin minus total dominating function (TMTDF) if f(N^−(v)) ≥ 1 and f(N^+(v)) ≥ 1 for each vertex v ∈ V. The twin minus total domination number of D is γ_mt^∗ (D) = min{ w(f) | f is a TMTDF of D }. In this paper, we initiate the study of twin minus total domination numbers in digraphs and we present some lower bounds for γ_mt^∗ (D) in terms of the order, size and maximum and minimum in-degrees and out-degrees. In addition, we determine the twin minus total domination numbers of some classes of digraphs.
Keywords:
twin minus total dominating function, twin minus total domination number, directed graph
@article{DMGT_2017_37_4_a9,
author = {Dehgardi, Nasrin and Atapour, Maryam},
title = {Twin {Minus} {Total} {Domination} {Numbers} {In} {Directed} {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {989--1004},
publisher = {mathdoc},
volume = {37},
number = {4},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a9/}
}
TY - JOUR AU - Dehgardi, Nasrin AU - Atapour, Maryam TI - Twin Minus Total Domination Numbers In Directed Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 989 EP - 1004 VL - 37 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a9/ LA - en ID - DMGT_2017_37_4_a9 ER -
Dehgardi, Nasrin; Atapour, Maryam. Twin Minus Total Domination Numbers In Directed Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 989-1004. http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a9/