Prime Factorization And Domination In The Hierarchical Product Of Graphs
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 873-890.

Voir la notice de l'article provenant de la source Library of Science

In 2009, Barrière, Dalfó, Fiol, and Mitjana introduced the generalized hierarchical product of graphs. This operation is a generalization of the Cartesian product of graphs. It is known that every connected graph has a unique prime factor decomposition with respect to the Cartesian product. We generalize this result to show that connected graphs indeed have a unique prime factor decomposition with respect to the generalized hierarchical product. We also give preliminary results on the domination number of generalized hierarchical products.
Keywords: generalized hierarchical product, Cartesian product, prime fac- tor decomposition
@article{DMGT_2017_37_4_a2,
     author = {Anderson, S.E. and Guob, Y. and Tenney, A. and Wash, K.A.},
     title = {Prime {Factorization} {And} {Domination} {In} {The} {Hierarchical} {Product} {Of} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {873--890},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a2/}
}
TY  - JOUR
AU  - Anderson, S.E.
AU  - Guob, Y.
AU  - Tenney, A.
AU  - Wash, K.A.
TI  - Prime Factorization And Domination In The Hierarchical Product Of Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 873
EP  - 890
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a2/
LA  - en
ID  - DMGT_2017_37_4_a2
ER  - 
%0 Journal Article
%A Anderson, S.E.
%A Guob, Y.
%A Tenney, A.
%A Wash, K.A.
%T Prime Factorization And Domination In The Hierarchical Product Of Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 873-890
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a2/
%G en
%F DMGT_2017_37_4_a2
Anderson, S.E.; Guob, Y.; Tenney, A.; Wash, K.A. Prime Factorization And Domination In The Hierarchical Product Of Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 873-890. http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a2/

[1] M. Azari and A. Iranmanesh, Chemical graphs constructed from rooted products and their Zagreb indices, MATCH Commun. Math. Comput. Chem. 70 (2013) 901-919.

[2] L. Barrière, F. Comellas, C. Dalfó and M.A. Fiol, The hierarchical product of graphs, Discrete Appl. Math. 157 (2009) 36-48. doi: 10.1016/j.dam.2008.04.018

[3] L. Barrière, C. Dalfó, M.A. Fiol and M. Mitjana, The generalized hierarchical product of graphs, Discrete Math. 309 (2009) 3871-3881. doi: 10.1016/j.disc.2008.10.028

[4] B. Brešar, P. Dorbec, W. Goddard, B. Hartnell, M.A. Henning, S. Klavžar and D. Rall, Vizing’s conjecture: A survey and recent results, J. Graph Theory 69 (2012) 46-76. doi: 10.1002/jgt.20565

[5] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985) 287-293. doi: 10.1007/BF01848079

[6] C.D. Godsil and B.D. McKay, A new graph product and its spectrum, Bull. Aust. Math. Soc. 18 (1978) 21-28. doi: 10.1017/S0004972700007760

[7] R. Hammack, W. Imrich and S. Klavˇzar, Handbook of Product Graphs, Second Edition (CRC Press, Boca Raton, FL, 2011).

[8] M.S. Jacobson and L.F. Kinch, On the domination of the products of graphs II: Trees, J. Graph Theory 10 (1986) 97-106. doi: 10.1002/jgt.3190100112

[9] S. Jung, S. Kim and B. Kahng, Geometric fractal growth model for scale-free net- works, Phys. Rev. E 65 (2002) 056101. doi: 10.1103/PhysRevE.65.056101

[10] K.M. Koh, D.G. Rogers and T. Tran, Products of graceful trees, Discrete Math. 31 (1980) 279-292. doi: 10.1016/0012-365X(80)90139-9

[11] D. Kuziak, I.G. Yero and J.A. Rodriguez-Velazquez, Strong metric dimension of rooted product graphs, Int. J. Comput. Math. 93 (2016) 1265-1280. doi: 10.1080/00207160.2015.1061656

[12] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225-233. doi: 10.2140/pjm.1975.61.225

[13] M.E.J. Newman, The structure and function of complex networks, SIAM Rev. 45 (2003) 167-256. doi: 10.1137/S003614450342480

[14] G. Sabidussi, Graph multiplication, Math. Z. 72 (1960) 446-457. doi: 10.1007/BF01162967

[15] V.G. Vizing, The cartesian product of graphs, Vyˇcisl. Sistemy 9 (1963) 30-43, in Russian. English translation in: Comp. El. Syst. 2 (1966) 352-365.