Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_4_a14, author = {Zhou, Sizhong and Wu, Jiancheng and Zhang, Tao}, title = {The {Existence} {Of} {P\protect\textsubscript{\ensuremath{\geq}3}-Factor} {Covered} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1055--1065}, publisher = {mathdoc}, volume = {37}, number = {4}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a14/} }
TY - JOUR AU - Zhou, Sizhong AU - Wu, Jiancheng AU - Zhang, Tao TI - The Existence Of P≥3-Factor Covered Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 1055 EP - 1065 VL - 37 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a14/ LA - en ID - DMGT_2017_37_4_a14 ER -
Zhou, Sizhong; Wu, Jiancheng; Zhang, Tao. The Existence Of P≥3-Factor Covered Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 1055-1065. http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a14/
[1] J. Akiyama, D. Avis and H. Era, On a {1, 2}-factor of a graph, TRU Math. 16 (1980) 97-102.
[2] J. Akiyama and M. Kano, Factors and Factorizations of Graphs (Lecture Notes in Mathematics, 2013, Springer-Verlag, Berlin, Germany, 2011).
[3] C. Bazgan, A.H. Benhamdine, H. Li and M. Wózniak, Partitioning vertices of 1- tough graph into paths, Theoret. Comput. Sci. 263 (2001) 255-261. doi: 10.1016/S0304-3975(00)00247-4
[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (GTM-244, Berlin, Springer, 2008).
[5] V. Chvatal, Tough graphs and Hamiltonian Circuits, Discrete Math. 5 (1973) 215-228. doi: 10.1016/0012-365X(73)90138-6
[6] Y. Egawa, S. Fujita and K. Ota, K1,3-factors in graphs, Discrete Math. 308 (2008) 5965-5973. doi: 10.1016/j.disc.2007.11.013
[7] W. Gao and W. Wang, Toughness and fractional critical deleted graph, Util. Math. 98 (2015) 295-310.
[8] A. Kaneko, A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two, J. Combin. Theory Ser. B 88 (2003) 195-218. doi: 10.1016/S0095-8956(03)00027-3
[9] M. Kano, G.Y. Katona and Z. Király, Packing paths of length at least two, Discrete Math. 283 (2004) 129-135. doi: 10.1016/j.disc.2004.01.016
[10] M. Kano, H. Lu and Q. Yu, Component factors with large components in graphs, Appl. Math. Lett. 23 (2010) 385-389. doi: 10.1016/j.aml.2009.11.003
[11] M. Kouider and S. Ouatiki, Sufficient condition for the existence of an even [a, b]- factor in graph, Graphs Combin. 29 (2013) 1051-1057. doi: 10.1007/s00373-012-1168-9
[12] M. Kano and A. Saito, Star-factors with large components, Discrete Math. 312 (2012) 2005-2008. doi: 10.1016/j.disc.2012.03.017
[13] G. Liu and L. Zhang, Toughness and the existence of fractional k-factors of graphs, Discrete Math. 308 (2008) 1741-1748. doi: 10.1016/j.disc.2006.09.048
[14] J. Yang, Y. Ma and G. Liu, Fractional (g, f)-factors in graphs, Appl. Math. J. Chinese Univ. Ser. A 16 (2001) 385-390.
[15] S. Zhou, A new neighborhood condition for graphs to be fractional (k,m)-deleted graphs, Appl. Math. Lett. 25 (2012) 509-513. doi: 10.1016/j.aml.2011.09.048
[16] S. Zhou, Independence number, connectivity and (a, b, k)-critical graphs, Discrete Math. 309 (2009) 4144-4148. doi: 10.1016/j.disc.2008.12.013
[17] S. Zhou and Q. Bian, Subdigraphs with orthogonal factorizations of digraphs (II), European J. Combin. 36 (2014) 198-205. doi: 10.1016/j.ejc.2013.06.042
[18] Y. Zhang, G. Yan and M. Kano, Star-like factors with large components, J. Oper. Res. Soc. China 3 (2015) 81-88. doi: 10.1007/s40305-014-0066-7
[19] H. Zhang and S. Zhou, Characterizations for P≥2-factor and P≥3-factor covered graphs, Discrete Math. 309 (2009) 2067-2076. doi: 10.1016/j.disc.2008.04.022