The Existence Of P≥3-Factor Covered Graphs
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 1055-1065.

Voir la notice de l'article provenant de la source Library of Science

A spanning subgraph F of a graph G is called a P≥3-factor of G if every component of F is a path of order at least 3. A graph G is called a P≥3-factor covered graph if G has a P≥3-factor including e for any e ∈ E(G). In this paper, we obtain three sufficient conditions for graphs to be P≥3-factor covered graphs. Furthermore, it is shown that the results are sharp.
Keywords: P≥3-factor, P≥3-factor covered graph, toughness, isolated toughness, regular graph
@article{DMGT_2017_37_4_a14,
     author = {Zhou, Sizhong and Wu, Jiancheng and Zhang, Tao},
     title = {The {Existence} {Of} {P\protect\textsubscript{\ensuremath{\geq}3}-Factor} {Covered} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1055--1065},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a14/}
}
TY  - JOUR
AU  - Zhou, Sizhong
AU  - Wu, Jiancheng
AU  - Zhang, Tao
TI  - The Existence Of P≥3-Factor Covered Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 1055
EP  - 1065
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a14/
LA  - en
ID  - DMGT_2017_37_4_a14
ER  - 
%0 Journal Article
%A Zhou, Sizhong
%A Wu, Jiancheng
%A Zhang, Tao
%T The Existence Of P≥3-Factor Covered Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 1055-1065
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a14/
%G en
%F DMGT_2017_37_4_a14
Zhou, Sizhong; Wu, Jiancheng; Zhang, Tao. The Existence Of P≥3-Factor Covered Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 1055-1065. http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a14/

[1] J. Akiyama, D. Avis and H. Era, On a {1, 2}-factor of a graph, TRU Math. 16 (1980) 97-102.

[2] J. Akiyama and M. Kano, Factors and Factorizations of Graphs (Lecture Notes in Mathematics, 2013, Springer-Verlag, Berlin, Germany, 2011).

[3] C. Bazgan, A.H. Benhamdine, H. Li and M. Wózniak, Partitioning vertices of 1- tough graph into paths, Theoret. Comput. Sci. 263 (2001) 255-261. doi: 10.1016/S0304-3975(00)00247-4

[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (GTM-244, Berlin, Springer, 2008).

[5] V. Chvatal, Tough graphs and Hamiltonian Circuits, Discrete Math. 5 (1973) 215-228. doi: 10.1016/0012-365X(73)90138-6

[6] Y. Egawa, S. Fujita and K. Ota, K1,3-factors in graphs, Discrete Math. 308 (2008) 5965-5973. doi: 10.1016/j.disc.2007.11.013

[7] W. Gao and W. Wang, Toughness and fractional critical deleted graph, Util. Math. 98 (2015) 295-310.

[8] A. Kaneko, A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two, J. Combin. Theory Ser. B 88 (2003) 195-218. doi: 10.1016/S0095-8956(03)00027-3

[9] M. Kano, G.Y. Katona and Z. Király, Packing paths of length at least two, Discrete Math. 283 (2004) 129-135. doi: 10.1016/j.disc.2004.01.016

[10] M. Kano, H. Lu and Q. Yu, Component factors with large components in graphs, Appl. Math. Lett. 23 (2010) 385-389. doi: 10.1016/j.aml.2009.11.003

[11] M. Kouider and S. Ouatiki, Sufficient condition for the existence of an even [a, b]- factor in graph, Graphs Combin. 29 (2013) 1051-1057. doi: 10.1007/s00373-012-1168-9

[12] M. Kano and A. Saito, Star-factors with large components, Discrete Math. 312 (2012) 2005-2008. doi: 10.1016/j.disc.2012.03.017

[13] G. Liu and L. Zhang, Toughness and the existence of fractional k-factors of graphs, Discrete Math. 308 (2008) 1741-1748. doi: 10.1016/j.disc.2006.09.048

[14] J. Yang, Y. Ma and G. Liu, Fractional (g, f)-factors in graphs, Appl. Math. J. Chinese Univ. Ser. A 16 (2001) 385-390.

[15] S. Zhou, A new neighborhood condition for graphs to be fractional (k,m)-deleted graphs, Appl. Math. Lett. 25 (2012) 509-513. doi: 10.1016/j.aml.2011.09.048

[16] S. Zhou, Independence number, connectivity and (a, b, k)-critical graphs, Discrete Math. 309 (2009) 4144-4148. doi: 10.1016/j.disc.2008.12.013

[17] S. Zhou and Q. Bian, Subdigraphs with orthogonal factorizations of digraphs (II), European J. Combin. 36 (2014) 198-205. doi: 10.1016/j.ejc.2013.06.042

[18] Y. Zhang, G. Yan and M. Kano, Star-like factors with large components, J. Oper. Res. Soc. China 3 (2015) 81-88. doi: 10.1007/s40305-014-0066-7

[19] H. Zhang and S. Zhou, Characterizations for P≥2-factor and P≥3-factor covered graphs, Discrete Math. 309 (2009) 2067-2076. doi: 10.1016/j.disc.2008.04.022