The Existence Of P≥3-Factor Covered Graphs
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 1055-1065

Voir la notice de l'article provenant de la source Library of Science

A spanning subgraph F of a graph G is called a P≥3-factor of G if every component of F is a path of order at least 3. A graph G is called a P≥3-factor covered graph if G has a P≥3-factor including e for any e ∈ E(G). In this paper, we obtain three sufficient conditions for graphs to be P≥3-factor covered graphs. Furthermore, it is shown that the results are sharp.
Keywords: P≥3-factor, P≥3-factor covered graph, toughness, isolated toughness, regular graph
@article{DMGT_2017_37_4_a14,
     author = {Zhou, Sizhong and Wu, Jiancheng and Zhang, Tao},
     title = {The {Existence} {Of} {P\protect\textsubscript{\ensuremath{\geq}3}-Factor} {Covered} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1055--1065},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a14/}
}
TY  - JOUR
AU  - Zhou, Sizhong
AU  - Wu, Jiancheng
AU  - Zhang, Tao
TI  - The Existence Of P≥3-Factor Covered Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 1055
EP  - 1065
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a14/
LA  - en
ID  - DMGT_2017_37_4_a14
ER  - 
%0 Journal Article
%A Zhou, Sizhong
%A Wu, Jiancheng
%A Zhang, Tao
%T The Existence Of P≥3-Factor Covered Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 1055-1065
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a14/
%G en
%F DMGT_2017_37_4_a14
Zhou, Sizhong; Wu, Jiancheng; Zhang, Tao. The Existence Of P≥3-Factor Covered Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 1055-1065. http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a14/