Labeled Embedding Of (n, n-2)-Graphs In Their Complements
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 1015-1025.

Voir la notice de l'article provenant de la source Library of Science

Graph packing generally deals with unlabeled graphs. In [4], the authors have introduced a new variant of the graph packing problem, called the labeled packing of a graph. This problem has recently been studied on trees [M.A. Tahraoui, E. Duchêne and H. Kheddouci, Labeled 2-packings of trees, Discrete Math. 338 (2015) 816-824] and cycles [E. Duchˆene, H. Kheddouci, R.J. Nowakowski and M.A. Tahraoui, Labeled packing of graphs, Australas. J. Combin. 57 (2013) 109-126]. In this note, we present a lower bound on the labeled packing number of any (n, n − 2)-graph into Kn. This result improves the bound given by Woźniak in [Embedding graphs of small size, Discrete Appl. Math. 51 (1994) 233-241].
Keywords: packing of graphs, labeled packing, permutation
@article{DMGT_2017_37_4_a11,
     author = {Tahraoui, M.-A. and Duch\^ene, E. and Kheddouci, H.},
     title = {Labeled {Embedding} {Of} (n, {n-2)-Graphs} {In} {Their} {Complements}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1015--1025},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a11/}
}
TY  - JOUR
AU  - Tahraoui, M.-A.
AU  - Duchêne, E.
AU  - Kheddouci, H.
TI  - Labeled Embedding Of (n, n-2)-Graphs In Their Complements
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 1015
EP  - 1025
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a11/
LA  - en
ID  - DMGT_2017_37_4_a11
ER  - 
%0 Journal Article
%A Tahraoui, M.-A.
%A Duchêne, E.
%A Kheddouci, H.
%T Labeled Embedding Of (n, n-2)-Graphs In Their Complements
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 1015-1025
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a11/
%G en
%F DMGT_2017_37_4_a11
Tahraoui, M.-A.; Duchêne, E.; Kheddouci, H. Labeled Embedding Of (n, n-2)-Graphs In Their Complements. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 1015-1025. http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a11/

[1] B. Bollobás and S.E. Eldridge, Packing of graphs and applications to computational complexity, J. Combin. Theory Ser. B 25 (1978) 105-124. doi: 10.1016/0095-8956(78)90030-8

[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (McMillan, London; Elsevier, New York, 1976).

[3] D. Burns and S. Schuster, Every (p, p − 2) graph is contained in its complement, J. Graph Theory 1 (1977) 277-279. doi: 10.1002/jgt.3190010308

[4] E. Duchêne, H. Kheddouci, R.J. Nowakowski and M.A. Tahraoui, Labeled packing of graphs, Australas. J. Combin. 57 (2013) 109-126.

[5] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B 25 (1978) 295-302. doi: 10.1016/0095-8956(78)90005-9

[6] M.A. Tahraoui, E. Duchêne and H. Kheddouci, Labeled 2-packings of trees, Discrete Math. 338 (2015) 816-824. doi: 10.1016/j.disc.2014.12.01

[7] M. Woźniak, Embedding graphs of small size, Discrete Appl. Math. 51 (1994) 233-241. doi: 10.1016/0166-218X(94)90112-0

[8] M. Woźniak, Packing of graphs and permutations-a survey, Discrete Math. 276 (2004) 379-391. doi: 10.1016/S0012-365X(03)00296-6

[9] H.P. Yap, Packing of graphs-a survey, Discrete Math. 72 (1988) 395-404. doi: 10.1016/0012-365X(88)90232-4