Asymptotic Sharpness of Bounds on Hypertrees
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 789-795.

Voir la notice de l'article provenant de la source Library of Science

The hypertree can be defined in many different ways. Katona and Szabó introduced a new, natural definition of hypertrees in uniform hypergraphs and investigated bounds on the number of edges of the hypertrees. They showed that a k-uniform hypertree on n vertices has at most nk−1 edges and they conjectured that the upper bound is asymptotically sharp. Recently, Szabó verified that the conjecture holds by recursively constructing an infinite sequence of k-uniform hypertrees and making complicated analyses for it. In this note we give a short proof of the conjecture by directly constructing a sequence of k-uniform k-hypertrees.
Keywords: hypertree, semicycle in hypergraph, chain in hypergraph
@article{DMGT_2017_37_3_a19,
     author = {Lin, Yi and Kang, Liying and Shan, Erfang},
     title = {Asymptotic {Sharpness} of {Bounds} on {Hypertrees}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {789--795},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a19/}
}
TY  - JOUR
AU  - Lin, Yi
AU  - Kang, Liying
AU  - Shan, Erfang
TI  - Asymptotic Sharpness of Bounds on Hypertrees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 789
EP  - 795
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a19/
LA  - en
ID  - DMGT_2017_37_3_a19
ER  - 
%0 Journal Article
%A Lin, Yi
%A Kang, Liying
%A Shan, Erfang
%T Asymptotic Sharpness of Bounds on Hypertrees
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 789-795
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a19/
%G en
%F DMGT_2017_37_3_a19
Lin, Yi; Kang, Liying; Shan, Erfang. Asymptotic Sharpness of Bounds on Hypertrees. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 789-795. http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a19/

[1] C. Berge, Hypergraphs (Amsterdam, North-Holland, 1989).

[2] G.Y. Katona and P.G.N. Szabó, Bounds on the number of edges in hypertrees, Discrete Math. 339 (2016) 1884–1891. doi:10.1016/j.disc.2016.01.004

[3] J. Nieminen and M. Peltola, Hypertrees, Appl. Math. Lett. 12 (1999) 35–38. doi:10.1016/S0893-9659(98)00145-1

[4] B. Oger, Decorated hypertrees, J. Combin. Theory Ser. A 120 (2013) 1871–1905. doi:10.1016/j.jcta.2013.07.006

[5] P.G.N. Szabó, Bounds on the number of edges of edge-minimal, edge-maximal and l-hypertrees, Discuss. Math. Graph Theory 36 (2016) 259–278. doi:10.7151/dmgt.1855