Asymptotic Sharpness of Bounds on Hypertrees
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 789-795
Cet article a éte moissonné depuis la source Library of Science
The hypertree can be defined in many different ways. Katona and Szabó introduced a new, natural definition of hypertrees in uniform hypergraphs and investigated bounds on the number of edges of the hypertrees. They showed that a k-uniform hypertree on n vertices has at most nk−1 edges and they conjectured that the upper bound is asymptotically sharp. Recently, Szabó verified that the conjecture holds by recursively constructing an infinite sequence of k-uniform hypertrees and making complicated analyses for it. In this note we give a short proof of the conjecture by directly constructing a sequence of k-uniform k-hypertrees.
Keywords:
hypertree, semicycle in hypergraph, chain in hypergraph
@article{DMGT_2017_37_3_a19,
author = {Lin, Yi and Kang, Liying and Shan, Erfang},
title = {Asymptotic {Sharpness} of {Bounds} on {Hypertrees}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {789--795},
year = {2017},
volume = {37},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a19/}
}
Lin, Yi; Kang, Liying; Shan, Erfang. Asymptotic Sharpness of Bounds on Hypertrees. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 789-795. http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a19/
[1] C. Berge, Hypergraphs (Amsterdam, North-Holland, 1989).
[2] G.Y. Katona and P.G.N. Szabó, Bounds on the number of edges in hypertrees, Discrete Math. 339 (2016) 1884–1891. doi:10.1016/j.disc.2016.01.004
[3] J. Nieminen and M. Peltola, Hypertrees, Appl. Math. Lett. 12 (1999) 35–38. doi:10.1016/S0893-9659(98)00145-1
[4] B. Oger, Decorated hypertrees, J. Combin. Theory Ser. A 120 (2013) 1871–1905. doi:10.1016/j.jcta.2013.07.006
[5] P.G.N. Szabó, Bounds on the number of edges of edge-minimal, edge-maximal and l-hypertrees, Discuss. Math. Graph Theory 36 (2016) 259–278. doi:10.7151/dmgt.1855