One More Turán Number and Ramsey Number for the Loose 3-Uniform Path of Length Three
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 2, pp. 443-464
Voir la notice de l'article provenant de la source Library of Science
Let P denote a 3-uniform hypergraph consisting of 7 vertices a, b, c, d, e, f, g and 3 edges a, b, c, c, d, e, and e, f, g. It is known that the r-color Ramsey number for P is R(P; r) = r + 6 for r ≤ 9. The proof of this result relies on a careful analysis of the Turán numbers for P. In this paper, we refine this analysis further and compute the fifth order Turán number for P, for all n. Using this number for n = 16, we confirm the formula R(P; 10) = 16.
Keywords:
Ramsey numbers, Turán numbers
@article{DMGT_2017_37_2_a9,
author = {Polcyn, Joanna},
title = {One {More} {Tur\'an} {Number} and {Ramsey} {Number} for the {Loose} {3-Uniform} {Path} of {Length} {Three}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {443--464},
publisher = {mathdoc},
volume = {37},
number = {2},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a9/}
}
TY - JOUR AU - Polcyn, Joanna TI - One More Turán Number and Ramsey Number for the Loose 3-Uniform Path of Length Three JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 443 EP - 464 VL - 37 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a9/ LA - en ID - DMGT_2017_37_2_a9 ER -
Polcyn, Joanna. One More Turán Number and Ramsey Number for the Loose 3-Uniform Path of Length Three. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 2, pp. 443-464. http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a9/