One More Turán Number and Ramsey Number for the Loose 3-Uniform Path of Length Three
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 2, pp. 443-464.

Voir la notice de l'article provenant de la source Library of Science

Let P denote a 3-uniform hypergraph consisting of 7 vertices a, b, c, d, e, f, g and 3 edges a, b, c, c, d, e, and e, f, g. It is known that the r-color Ramsey number for P is R(P; r) = r + 6 for r ≤ 9. The proof of this result relies on a careful analysis of the Turán numbers for P. In this paper, we refine this analysis further and compute the fifth order Turán number for P, for all n. Using this number for n = 16, we confirm the formula R(P; 10) = 16.
Keywords: Ramsey numbers, Turán numbers
@article{DMGT_2017_37_2_a9,
     author = {Polcyn, Joanna},
     title = {One {More} {Tur\'an} {Number} and {Ramsey} {Number} for the {Loose} {3-Uniform} {Path} of {Length} {Three}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {443--464},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a9/}
}
TY  - JOUR
AU  - Polcyn, Joanna
TI  - One More Turán Number and Ramsey Number for the Loose 3-Uniform Path of Length Three
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 443
EP  - 464
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a9/
LA  - en
ID  - DMGT_2017_37_2_a9
ER  - 
%0 Journal Article
%A Polcyn, Joanna
%T One More Turán Number and Ramsey Number for the Loose 3-Uniform Path of Length Three
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 443-464
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a9/
%G en
%F DMGT_2017_37_2_a9
Polcyn, Joanna. One More Turán Number and Ramsey Number for the Loose 3-Uniform Path of Length Three. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 2, pp. 443-464. http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a9/

[1] R. Csákány and J. Kahn, A homological approach to two problems on finite sets, J. Algebraic Combin. 9 (1999) 141-149. doi: 10.1023/A:1018630111976

[2] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Q. J. Math. 12 (1961) 313-320. doi: 10.1093/qmath/12.1.313

[3] P. Frankl and Z. Füredi, Exact solution of some Turán-type problems, J. Combin. Theory Ser. A 45 (1987) 226-262. doi: 10.1016/0097-3165(87)90016-1

[4] P. Frankl and Z. Füredi, Non-trivial intersecting families, J. Combin. Theory Ser. A 41 (1986) 150-153. doi: 10.1016/0097-3165(86)90121-4

[5] Z. Füredi, T. Jiang and R. Seiver, Exact solution of the hypergraph Turán problem for k-uniform linear paths, Combinatorica 34 (2014) 299-322. doi: 10.1007/s00493-014-2838-4

[6] A. Gyárfás and G. Raeisi, The Ramsey number of loose triangles and quadrangles in hypergraphs, Electron. J. Combin. 19 (2012) # R30.

[7] J. Han and Y. Kohayakawa, The maximum size of a non-trivial intersecting uniform family that is not a subfamily of the Hilton-Milner family, Proc. Amer. Math. Soc. 145 (2017) 73-87. doi: 101090/proc/13221

[8] A.J.W. Hilton, and E.C. Milner, Some intersection theorems for systems of finite sets, Q. J. Math. 18 (1967) 369-384. doi: 10.1093/qmath/18.1.369

[9] E. Jackowska, The 3-color Ramsey number for a 3-uniform loose path of length 3, Australas. J. Combin. 63 (2015) 314-320.

[10] E. Jackowska, J. Polcyn and A. Ruciński, Turán numbers for linear 3-uniform paths of length 3, Electron. J. Combin. 23(2) (2016) #P2.30.

[11] E. Jackowska, J. Polcyn and A. Ruciński, Multicolor Ramsey numbers and restricted Turán numbers for the loose 3-uniform path of length three, submitted.

[12] A. Kostochka, D. Mubayi and J. Verstraëte, Turán problems and shadows I: paths and cycles, J. Combin. Theory Ser. A 129 (2015) 57-79 doi: 10.1016/j.jcta.2014.09.005

[13] G.R. Omidi and M. Shahsiah, Ramsey numbers of 3-uniform loose paths and loose cycles, J. Combin. Theory Ser. A 121 (2014) 64-73. doi: 10.1016/j.jcta.2013.09.003

[14] J. Polcyn and A. Ruciński, A hierarchy of maximal intersecting triple systems, Opuscula Math. 37(4) (2017), to appear. arXiv:1608.06114

[15] J. Polcyn and A. Ruciński, Refined Turán and Ramsey numbers for the loose 3- uniform path of length three, Discrete Math. 340 (2017) 107-118. doi: 10.1016/j.disc.2016.08.006