Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_2_a8, author = {Ma{\l}afiejska, Anna and Ma{\l}afiejski, Micha{\l}}, title = {Interval {Incidence} {Coloring} of {Subcubic} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {427--441}, publisher = {mathdoc}, volume = {37}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a8/} }
TY - JOUR AU - Małafiejska, Anna AU - Małafiejski, Michał TI - Interval Incidence Coloring of Subcubic Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 427 EP - 441 VL - 37 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a8/ LA - en ID - DMGT_2017_37_2_a8 ER -
Małafiejska, Anna; Małafiejski, Michał. Interval Incidence Coloring of Subcubic Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 2, pp. 427-441. http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a8/
[1] N. Alon, C. McDiarmid and B. Reed, Star arboricity, Combinatorica 12 (1992) 375-380. doi: 10.1007/BF01305230
[2] A. Asratian and R. Kamalian, Investigation on interval edge-colorings of graphs, J. Combin. Theory Ser. B 62 (1994) 34-43. doi: 10.1006/jctb.1994.1053
[3] R.A. Brualdi and J.Q. Massey, Incidence and strong edge colorings of graphs, Discrete Math. 122 (1993) 51-58. doi: 10.1016/0012-365X(93)90286-3
[4] M. Hosseini Dolama, E. Sopena and X. Zhu, Incidence coloring of k-degenerated graphs, Discrete Math. 283 (2004) 121-128. doi: 10.1016/j.disc.2004.01.015
[5] M. Hosseini Dolama and E. Sopena, On the maximum average degree and the inci- dence chromatic number of a graph, Discrete Math. Theor. Comput. Sci. 7 (2005) 203-216.
[6] K. Giaro, Interval edge-coloring, in: Graph Colorings, Contemporary Mathematics AMS, M. Kubale Ed. (2004) 105-121. doi: 10.1090/conm/352/08
[7] K. Giaro, M. Kubale and M. Małafiejski, Compact scheduling in open shop with zero-one time operations, INFOR Inf. Syst. Oper. Res. 37 (1999) 37-47. doi: 10.1080/03155986.1999.11732367
[8] K. Giaro, M. Kubale and M. Małafiejski, Consecutive colorings of the edges of gen- eral graphs, Discrete Math. 236 (2001) 131-143. doi: 0.1016/S0012-365X(00)00437-4
[9] B. Guiduli, On incidence coloring and star arboricity of graphs, Discrete Math. 163 (1997) 275-278. doi: 10.1016/0012-365X(95)00342-T
[10] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935) 26-30.
[11] R. Janczewski, A. Małafiejska and M. Małafiejski, Interval incidence coloring of graphs, Zesz. Nauk. Pol. Gd. 13 (2007) 481-488, in Polish.
[12] R. Janczewski, A. Małafiejska and M. Małafiejski, Interval wavelength assignment in all-optical star networks, in: PPAM 2009 (Springer Verlag, 2010) Lecture Notes in Comput. Sci. 6067 (2010) 11-20. doi: 10.1007/978-3-642-14390-8_2
[13] R. Janczewski, A. Małafiejska and M. Małafiejski, Interval incidence coloring of bipartite graphs, Discrete Math. 166 (2014) 131-140. doi: 10.1016/j.dam.2013.10.007
[14] R. Janczewski, A. Małafiejska and M. Małafiejski, Interval incidence graph coloring, Discrete Math. 182 (2015) 73-83. doi: 10.1016/j.dam.2014.03.006
[15] R. Janczewski, A. Małafiejska and M. Małafiejski, On incidence coloring of complete multipartite and semicubic bipartite graphs, Discuss. Math. Graph Theory (2017), in press.
[16] X. Li and J. Tu, NP-completeness of 4-incidence colorability of semi-cubic graphs, Discrete Math. 308 (2008) 1334-1340. doi: 10.1016/j.disc.2007.03.076
[17] M. Maydanskiy, The incidence coloring conjecture for graphs of maximum degree three, Discrete Math. 292 (2005) 131-141. doi: 10.1016/j.disc.2005.02.003
[18] A.C. Shiau, T.-H. Shiau and Y.-L. Wang, Incidence coloring of Cartesian product graphs, Inform. Process. Lett. 115 (2015) 765-768. doi: 10.1016/j.ipl.2015.05.002
[19] W.C. Shiu and P.K. Sun, Invalid proofs on incidence coloring, Discrete Math. 308 (2008) 6575-6580. doi: 10.1016/j.disc.2007.11.030