Distance 2-Domination in Prisms of Graphs
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 2, pp. 383-397.

Voir la notice de l'article provenant de la source Library of Science

A set of vertices D of a graph G is a distance 2-dominating set of G if the distance between each vertex u ∊ (V (G) − D) and D is at most two. Let γ2(G) denote the size of a smallest distance 2-dominating set of G. For any permutation π of the vertex set of G, the prism of G with respect to π is the graph πG obtained from G and a copy G′ of G by joining u ∊ V(G) with v′ ∊ V(G′) if and only if v′ = π(u). If γ2(πG) = γ2(G) for any permutation π of V(G), then G is called a universal γ2-fixer. In this work we characterize the cycles and paths that are universal γ2-fixers.
Keywords: distance 2 dominating set, prisms of graphs, universal fixer
@article{DMGT_2017_37_2_a5,
     author = {Hurtado, Ferran and Mora, Merc\`e and Rivera-Campo, Eduardo and Zuazua, Rita},
     title = {Distance {2-Domination} in {Prisms} of {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {383--397},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a5/}
}
TY  - JOUR
AU  - Hurtado, Ferran
AU  - Mora, Mercè
AU  - Rivera-Campo, Eduardo
AU  - Zuazua, Rita
TI  - Distance 2-Domination in Prisms of Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 383
EP  - 397
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a5/
LA  - en
ID  - DMGT_2017_37_2_a5
ER  - 
%0 Journal Article
%A Hurtado, Ferran
%A Mora, Mercè
%A Rivera-Campo, Eduardo
%A Zuazua, Rita
%T Distance 2-Domination in Prisms of Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 383-397
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a5/
%G en
%F DMGT_2017_37_2_a5
Hurtado, Ferran; Mora, Mercè; Rivera-Campo, Eduardo; Zuazua, Rita. Distance 2-Domination in Prisms of Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 2, pp. 383-397. http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a5/

[1] C.M. Mynhardt and Z. Xu, Domination in prisms of graphs: universal fixers, Util. Math. 78 (2009) 185-201.

[2] M. Lemańska and R. Zuazua, Convex universal fixers, Discuss. Math. Graph Theory 32 (2012) 807-812. doi: 10.7151/dmgt.1631

[3] A. Meir and J.W. Moon, Relations between packing and covering number of a tree, Pacific J. Math. 61 (1975) 225-233. doi: 10.2140/pjm.1975.61.225

[4] C.M. Mynhardt and M. Schurch, Paired domination in prisms of graphs, Discus. Math. Graph Theory 31 (2011) 5-23. doi: 10.7151/dmgt.1526

[5] K. Wash, Edgeless graphs are the only universal fixers, Czechoslovak Math. J. 64 (2014) 833-843. doi: 10.1007/s10587-014-0136-3