Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_2_a11, author = {Wide, Wojciech}, title = {A {Triple} of {Heavy} {Subgraphs} {Ensuring} {Pancyclicity} of {2-Connected} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {477--499}, publisher = {mathdoc}, volume = {37}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a11/} }
TY - JOUR AU - Wide, Wojciech TI - A Triple of Heavy Subgraphs Ensuring Pancyclicity of 2-Connected Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 477 EP - 499 VL - 37 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a11/ LA - en ID - DMGT_2017_37_2_a11 ER -
Wide, Wojciech. A Triple of Heavy Subgraphs Ensuring Pancyclicity of 2-Connected Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 2, pp. 477-499. http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a11/
[1] P. Bedrossian, Forbidden Subgraph and Minimum Degree Conditions for Hamil- tonicity (PhD Thesis, Memphis State University, USA, 1991).
[2] P. Bedrossian, G. Chen and R.H. Schelp, A generalization of Fan’s condition for Hamiltonicity, pancyclicity and Hamiltonian connectedness, Discrete Math. 115 (1993) 39-59. doi: 10.1016/0012-365X(93)90476-A
[3] A. Benhocine and A.P. Wojda, The Geng-Hua Fan conditions for pancyclic or Hamilton-connected graphs, J. Combin. Theory Ser. B 58 (1987) 167-180. doi: 10.1016/0095-8956(87)90038-4
[4] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory Ser. B 11 (1971) 80-84. doi: 10.1016/0095-8956(71)90016-5
[5] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan London and Elsevier, 1976). doi: 10.1007/978-1-349-03521-2
[6] G. Chen, B. Wei and X. Zhang, Degree light-free graphs and Hamiltonian cycles, Graphs Combin. 17 (2001) 409-434. doi: 10.1007/s003730170018
[7] R. Faudree, Z. Ryjáˇcek and I. Schiermeyer, Forbidden subgraphs and cycle extend- ability, J. Combin. Math. Combin. Comput. 19 (1995) 109-128.
[8] M. Ferrara, M.S. Jacobson and A. Harris, Cycle lengths in Hamiltonian graphs with a pair of vertices having large degree sum, Graphs Combin. 26 (2010) 215-223. doi: 10.1007/s00373-010-0915-z
[9] B. Ning, Fan-type degree condition restricted to triples of induced subgraphs ensuring Hamiltonicity, Inform. Process. Lett. 113 (2013) 823-826. doi: 10.1016/j.ipl.2013.07.014
[10] B. Ning, Pairs of Fan-type heavy subgraphs for pancyclicity of 2-connected graphs, Australas. J. Combin. 58 (2014) 127-136.
[11] E.F. Schmeichel and S.L. Hakimi, A cycle structure theorem for Hamiltonian graphs, J. Combin. Theory Ser. B 45 (1988) 99-107. doi: 10.1016/0095-8956(88)90058-5
[12] W.Wide l, A Fan-type heavy pair of subgraphs for pancyclicity of 2-connected graphs, Discuss. Math. Graph Theory 36 (2016) 173-184. doi: 10.7151/dmgt.1840